
27.10.2008 Fasial Aslam 1

WSN-Projects: Lecture-2

Programming Motes using TinyOS and NesC

27.10.2008 Fasial Aslam 2

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Contents

� What is NesC?

� What is TinyOS?

� Why TakaTuka needs TinyOS/NesC?

� Problem with C and NesC solution

� Problem with C in detail

� NesC concepts
� Component

� Module

� Configuration

� Interface

� Command

� Event

� Split-Phase

� Task

� Async Vs Snyn commands

� Keywords

� NesC solution in detail

� TinyOS and NesC limitations

27.10.2008 Fasial Aslam 3

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
What is NesC?

� NesC

� A superset of C

� One may generate an intermediate C file from a NesC project

� Main feature:

� Separation of declaration and definition

27.10.2008 Fasial Aslam 4

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
What is TinyOS?

� TinyOS

� An event-driven operating system

� Developed using NesC

27.10.2008 Fasial Aslam 5

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

Why TakaTuka needs
TinyOS/NesC?

� Support for many types of motes
� At least 15 Motes types are supported by NesC/TinyOS (source: SNM)

� TakaTuka aim is to support all of those motes

� Idea is
� Use drivers already developed in NesC

� Integrate TakaTuka with TinyOS

27.10.2008 Fasial Aslam 6

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

Problem with C & NesC solution

� C
� In C declaration is depended on definition of a function or variable

� Otherwise, dynamic pointers must be used

� NesC
� Declaration is independent from definition

27.10.2008 Fasial Aslam 7

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Problem with C in detail

� A source file may has variable/function (say var-fun)
� Declaration

� Definition

� Reference

� Declaration
� Gives type information and tell that a var-fun exists

� Definition
� Actually defines a var-fun (e.g. implementation of a function)

� Reference
� Use a var-fun (e.g. int i = foo(5);)

27.10.2008 Fasial Aslam 8

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Problem with C in detail

//fooImpl.c
#include “foobar.h”

void foo() { //definition of foo function
foobar(); //reference of foobar

}

//barImpl.c
#include “foobar.h”

void bar() {//definition of bar function
foobar(); //reference of foobar

}

//foobarImpl.c
#include “foobar.h”

void foobar() {//definition of foobar function
…

}

//foobar.h

void foobar(); //declaration of foobar function

27.10.2008 Fasial Aslam 9

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Problem with C in detail

� Problem
� Two source files referring a same function become inter-dependent

� Because declaration corresponds to a single definition

� Cannot change implementation of foobar for foo without effecting bar.

� Solution
� Use function pointers

� Draw back
� Wastage of RAM

� Unlike PC, RAM on mote only stores run-time information

� Flash store program and everything else

� More error prone

27.10.2008 Fasial Aslam 10

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
NesC Concepts

� Component
� Module

� Configuration

� Interface

� Command

� Event

� Split-Phase

� Task

� Sync Vs Async Commands

27.10.2008 Fasial Aslam 11

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Components

� NesC is a component based C dialect

� A component is similar to Java object
� It provides encapsulated state and couple state with functionality

� A component is not really a Java object
� No inheritance and usually Singleton

� Components have only private variables

� Only function could be use to pass the variables between components

� Two types of components
� Modules

� Configuration

27.10.2008 Fasial Aslam 12

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Module & Interface

� Module has the implementation of functions

� It uses pure local namespace
� Component has to declare function it uses and provides

� NesC Interface is very Similar to Java Interface
� Declaration of functions

27.10.2008 Fasial Aslam 13

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

NesC Concepts: Module &
Interface

module fooC {
uses interface foobarInterface as fbi;
}

implementation {
void foo() {

call fbi.foobar();
}

}

module barC {
uses interface foobarInterface as foobi;

}
implementation {

void bar() {
call foobi.foobar();

}
}

Interface foobarInterface {
command void foobar ();

}

module foobarC {
provide interface foobarInterface;

}
implementation {

command void foobarInterface.foobar() {

…
}

}

configuration foobarAppC {

}
implementation {

components fooC, barC;
fooC.fbi -> foobarC;
barC.foobi -> foobarC;

}

27.10.2008 Fasial Aslam 14

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Configuration

� Recall: Components have two types
� Module

� Configuration

� Configuration
� Wire components together

� Has two operations

� user -> provider (or provider <- user)

� = (between two providers mostly)

� Usually use to equate the interface provided by the configuration

Configuration ActiveMessageC {
provides interface Init;
provides interface SplitControl;

}
Implementation {

components CC240ActiveMessageC as AM;
Init = AM;
SplitControl = AM;

}

27.10.2008 Fasial Aslam 15

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Split-Phase

� TinyOS has no threading
� Thread take memory

� Each has a separate stack

� Thread is block then no one is using it stack memory

� When you need threading?
� For the functions that involves busy waiting (e.g. Sending a packet)

� Function required threading are implemented in Split-phase
� Two phase

� Downcall : Command – start the operation

� Upcall : Event – operation has been completed

27.10.2008 Fasial Aslam 16

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Command & Event

� Command are implemented by provider of interface

� Events are implemented by user of interface

� Example

Interface Send {
command error_t send(message_t* msg, uint8_t len);
event void sendDone(message_t* msg, error_t error);

}

module SendC {
uses interface Send;
uses interface Boot;

}
Implementation {

event void Boot.booted() {
Send.send(NULL, 0);

}

event void sendDone(message_t* msg, error_t error) {
//do nothing

}

}

27.10.2008 Fasial Aslam 17

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Task

� Task
� Are deferred procedure call

� Event are usually signaled by posting a task

� Task are strictly local to a module

� No parameters

� No return type

� No defined in any interface

� Each task is non-preemptive and atomic with respect to other tasks

� One task runs at any time

� A task can post itself

27.10.2008 Fasial Aslam 18

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Async Vs Sync command

� Async are preemptable commands

� Unlike task Async commands are not atomic with respect to
other commands

� Async command cannot call a Sync command
� Can call other Async commands

� Can post task which may call a Sync command

� Sync commands calls are blocking like normal function call

27.10.2008 Fasial Aslam 19

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Keywords

module FilterMagC {
provides interface StdControl;
provides interface Read<uint16_t>;
uses interface Timer<TMilli>;
uses interface Read<uint16_t> as RawRead;

}
implementation {

uint16_t filterVal = 0;
uint16_t lastVal = 0;
task void readDoneTask();
command error_t StdControl.start() {
return call Timer.startPeriodic(10);

}
command error_t StdControl.stop() {

return call Timer.stop();
}
event void Timer.fired() {

call RawRead.read();
}
event void RawRead.readDone(error_t err, uint16_t val) {

if (err == SUCCESS) {
lastVal = val;
filterVal *= 9;
filterVal /= 10;
filterVal += lastVal / 10;

}
}
command error_t Read.read() {

post readDoneTask();
return SUCCESS;

}
task void readDoneTask() {

signal Read.readDone(SUCCESS, filterVal);
}

Listing 4.15: (Philip Levis, “TinyOS
Programming”, 2006)

27.10.2008 Fasial Aslam 20

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
NesC solution in detail

� Unlike C each NesC function had a unique local name
� Component A calls command B then A$B is the name of such call

� NesC component defines what it uses and provides

� A user is wired to a provides during compilation times (instead
of linking) based on configuration
� NesC has static linking

� Advantages of static linking
� Better optimize codes by compiler

� Less error prone

� Disadvantages
� Less flexible

� Configurations become cumbersome as the project grows

27.10.2008 Fasial Aslam 21

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TinyOS and NesC limitations

� NesC is a low-level languages
� Have many disadvantages inherited from C

� No automatic garbage collection

� Memory leaks

� No portability once code is compiled

� It is not object oriented languages
� Limited design patterns application

� Configurations are difficult to change for a big program

27.10.2008 Fasial Aslam 22

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TinyOS and NesC limitations

� Thread Vs event driven
� TinyOS is event-driven and not a thread base OS

� Threads have better response time

� Event drive OS has less memory requirements

� Event driven model drawbacks:

� requires need manual configuration

� Manual state handling

� Difficult to change code without changing already written state handlers

� All Events have to be implemented by a user of an interface
� Even if user of a interface is not interested in many of them

27.10.2008 Fasial Aslam 23

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
References

� Philip Levis, “TinyOS Programming”, 2006

� Kim et al, “Multithreading Optimization Techniques for Sensor Network

Operating Systems”, EWSN 2007

27.10.2008 Fasial Aslam 24

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
The End

� Thank you for listening

