
27.10.2008 Fasial Aslam 1

WSN-Projects: Lecture-3

JVM & TakaTuka Introduction

27.10.2008 Fasial Aslam 2

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Contents

� Java advantages

� Java limitations

� JVM Responsibilities

� Loader

� Verifier & initialization

� Interpreter or JIT-compiler

� Garbage collection

� Thread scheduling

� JVM concepts
� Classfile format

� Constant pool

� Bytecode

� Data structures

27.10.2008 Fasial Aslam 3

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Contents

� TakaTuka design and optimization
� SUN Squawk design

� TakaTuka design and goals

� TakaTuka CP optimization

� TakaTuka bytecode optimization

� Your project

27.10.2008 Fasial Aslam 4

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Java advantages

� Java is object oriented

� Good and clean design

� Easy to modify and extend

� Easy to understand

� Unlike C++ it is fully object oriented (minus native methods calls)

� Ease of use and learn

� First language in many universities

� High level concepts

� Big community

� Java has a very big community

� Java code itself is now open-source from Sun

� Many tools, IDE are available

27.10.2008 Fasial Aslam 5

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Java advantages

� Memory protection

� No dangling pointers

� No segmentation fault errors

� Automatic garbage collection

� Portability

� Same set of binaries executable on different platform

� Program once run everywhere

� Why its portable?

� For motes provide options of partially updating a project using over the air

programming

� Change few class files instead of whole big application

27.10.2008 Fasial Aslam 6

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Java limitations

� Java is slow

� Especially with interpreter and not much with JIT-compiler

� Java is big on disk

� Class files are bigger than executable of C

� Java is big in RAM

� Java takes lots of RAM

27.10.2008 Fasial Aslam 7

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

JVM responsibilites

27.10.2008 Fasial Aslam 8

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
JVM Responsibilities

Loader

Verifier &

Initialization

Interpreter

(& optimization)

Garbage Collector

Thread Scheduler

(also known as

linking)

Java binaries

27.10.2008 Fasial Aslam 9

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Loader

� Find the class binaries and bring it to JVM

� When to load (classically)

� Loading is dynamic

� When a class is first time accessed

� e.g. new opcode is called or some static field is accessed etc

27.10.2008 Fasial Aslam 10

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
verification & initialization

� When? (classically)

� After loading a class

� Dynamic as loading

� Some verification are perform also during .java to .class conversion

� They are usually repeated during class loading and accessing

� What?

� Verification checks that the binary representation of a class or interface is

structurally correct

� Examples: (1) operands are valid, (2) branch address are valid, (3) method

signatures and method call matches, (4) private field is not access outside a

class etc.

� Initialization

� Execute static initializers and initialize the static fields

27.10.2008 Fasial Aslam 11

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Interpreter or JIT-compiler

� Java binaries (class-files) are machine independent

� Make Java portable

� Interpreter Vs Just-In Time (JIT) Compiler

� Interpreter interpret one instruction at a time

� JIT compiler make most frequent code parts into machine code (e.g. loops) so

that they can run faster

27.10.2008 Fasial Aslam 12

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Interpreter or JIT-compiler

� Why interpreter for mica2?

� Mica2 has Harvard architecture

� In Harvard architecture program and data memory are physically separated

� Flash: Program memory

� RAM: Data memory

� In order for JIT to work one has to write machine-code generated into the Flash

� Writing in the flash is slow

� Flash can be written in finite number of times

� Each program may has to write hundreds of time during its execution

� Interpreter

� Execute directly from Flash without any dynamic machine dependent code

generated

27.10.2008 Fasial Aslam 13

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Interpreter or JIT-compiler

� TakaTuka Aim

� Make interpreter run faster based on recent research

� Make it light weight for RAM

27.10.2008 Fasial Aslam 14

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Garbage collection

� Garbage collection clears the memory for future use

� Unlike C, programmer do not have to worry about freeing
memory

� When and how to do garbage collection

� Nothing specific

� Each JVM can handle it the way it prefers

� TakaTuka want to have

� Real time garbage collection

� A light garbage collection with no significant memory usage

� A garbage collection with small CPU usage

� Conserve battery lifetime

27.10.2008 Fasial Aslam 15

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Thread Scheduler

� Schedules what next thread to run

� May interrupt currently running thread for schedule a higher
priority thread

� Threads are much better as compared to Event-driven model

(TinyOS)

� But have significant memory overhead

� TinyOS Aims

� Scheduler that consume very small memory

� Current implementation is partially in Java and hence consumes RAM

� Threading model that use single stack for all the thread

27.10.2008 Fasial Aslam 16

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

JVM concepts

27.10.2008 Fasial Aslam 17

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Class file format

ClassFile {

u4 magic; // it is always 0xcafebabe

u2 minor_version; //minor and major version tell class-file format version

u2 major_version;

u2 constant_pool_count; //size of the constant pool

cp_info constant_pool [constant_pool_count-1]; //the constant pool (CP)

u2 access_flags; //tells if the class is public, private etc

u2 this_class; //this class pointer (points to class name in the CP)

u2 super_class; //super class pointer (note that only one)

u2 interfaces_count; //number of interfaces

u2 interfaces [interfaces_count]; //interfaces (CP entry of class_info)

u2 fields_count; //number of fields

field_info fields[fields_count]; //fields_info array

u2 methods_count; //field count

method_info methods[methods_count]; //method_info array

u2 attributes_count; //attribute count

attribute_info attributes[attributes_count]; //attribute_info array

}

27.10.2008 Fasial Aslam 18

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Constant Pool

� A CP of a class is a collection of distinct constant values of
variable size

� It reduces the size of Class file
� Each constant appears once in constant pool

� A constant usually is larger than two bytes

� Constant in constant pools are referred using two bytes

� A constant could be referred multiple times

� Example
� “Hello World” takes 11 bytes

� Let say it is used five times in a special class file format without a CP

� Total number of bytes used 11*5 = 55

� In normal class file with CP

� Total number of bytes used 11+(2*5) = 22

27.10.2008 Fasial Aslam 19

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Bytecode

� Method_info has the bytecode array (in the code_attribute)

� Bytecode has a set of instruction

� Instruction
� One byte op-code

� Zero to many byte operand

� Op-code
� Tells what the instruction is

� One byte opcode in Java but only 204 instructions

� Operand
� Any input for the instruction

� Not all instructions have no operands

� Example
� iload 5 //load local variable #5 on the operand stack

� Opcode (Mnemonic form) is “iload”

� 5 is the operand

27.10.2008 Fasial Aslam 20

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Data structures

� Stack

� Java has stack based instruction set

� Instead of a register base instruction set

� Many instruction either push or pop from operand stack

� For example iAdd will add two integers on the top of stack

� These values could be added by a function return or iload or some other way

� The operand stack of a function depends on the instructions sequence of that

functions

� Heap

� Heap is the place where object are placed

� Heap size depends upon the number of objects in the memory and their local

variables

27.10.2008 Fasial Aslam 21

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

TakaTuka design and

optimization

27.10.2008 Fasial Aslam 22

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Squawk design

� Split VM architecture

� Some part of JVM are perform on PC

� Rest on the mote

� Advantages

� Split JVM run faster

� Avoid memory consuming tasks

� Less run-time errors

� CLDC Compliance?

� Code must be verified and secure

� To make sure

� PC to mote data transfer must be

through secure connection

Loader

Verifier &
Initialization

Interpreter

Garbage Collector

Thread Scheduler

PC - side

Mote - side

Optimization

Secure connection

27.10.2008 Fasial Aslam 23

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TakaTuka design & goals

� Based on Squawk split-VM-architecture

� Better and more aggressive code optimization as compared to

Squawk

� To make Java by > 95% smaller on disk and RAM

� To make it run much faster with an interpreter

� Motes sometimes cannot have JIT-compiler due to Flash limitation

27.10.2008 Fasial Aslam 24

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TakaTuka CP Optimization

� Traditional: Duplicate values in the project of per class CP

� Class A has “Hello World” in its CP

� Class B has “Hello World” in its CP

� TakaTuka: Global CP per project

� Class A and Class B now have single constant pool with one “Hello World”

� Traditional: Numeric types in CP has fixed length

� Long will always be 8 bytes and integer/short/boolean always 4 bytes

� Example long l = 5; will take 8 bytes in the CP

� Example static final short s = 7; will take 4 bytes in CP

� TakaTuka: Numeric types are variable length

� Example long I = 5; will take now only 1 byte

� Example static final short s = 7; will take one byte in CP

27.10.2008 Fasial Aslam 25

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
TakaTuka CP optimization

� Traditional: Names resolution information

� Class, functions, fields names are written in the CP

� They are use for dynamic loading and debugging

� TakaTuka: Name resolution information

� Pre-loading on PC as in split-VM-architecture

� No naming information are transferred to motes

27.10.2008 Fasial Aslam 26

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

TakaTuka bytecode

optimization

� All bytecodes space is not used

� Java has 204 opcodes hence 52 are not used

� A program not use all 204 opcodes

� TakaTuka

� Use available opcodes (not used by a program)

� To create new instructions

� Objective is increase speed

� Reduce size

27.10.2008 Fasial Aslam 27

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer

TakaTuka bytecode

optimization

� TakaTuka: Two types of bytecode optimization

� Single instruction optimization

� Multiple instruction optimization

� In summary

� We reduce the size of existing single instructions

� Combine existing instruction

� Use all of opcodes not used by a program to make such new instructions

� Why increase speed

� Obvious that size decreases

� Speed increase because less number of instruction dispatch is required

27.10.2008 Fasial Aslam 28

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Your projects

� Five Projects

1. Dead code removal – pure java project

� Extendable to Bachelor thesis

� Group leader:

2. Multi-threading – mostly C project

� Extendable to Bachelor thesis

� Group leader:

3. 10 Tiny Projects – mostly C project

� Excellent start for a Bachelor thesis about Garbage collection or CLDC

compliance

� Group leader:

27.10.2008 Fasial Aslam 29

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Your project

4. TinyOS integration --- TinyOS/NesC, Java and C

� Extendable to Bachelor thesis

� Group leader:

5. Garbage collection – C and some Java

� Extendable to Bachelor thesis

� Group leader:

27.10.2008 Fasial Aslam 30

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
References

� Lindholm et al. “The JavaTM Virtual Machine Specification”, Second

Edition

27.10.2008 Fasial Aslam 31

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
The End

� Thank you for listening

