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JVM & TakaTuka Introduction
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Java advantages

� Java is object oriented

� Good and clean design

� Easy to modify and extend

� Easy to understand

� Unlike C++ it is fully object oriented (minus native methods calls)

� Ease of use and learn

� First language in many universities

� High level concepts

� Big community

� Java has a very big community

� Java code itself is now open-source from Sun

� Many tools, IDE are available
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Java advantages

� Memory protection

� No dangling pointers

� No segmentation fault errors

� Automatic garbage collection

� Portability

� Same set of binaries executable on different platform

� Program once run everywhere

� Why its portable?

� For motes provide options of partially updating a project using over the air 

programming

� Change few class files instead of whole big application
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Java limitations

� Java is slow

� Especially with interpreter and not much with JIT-compiler

� Java is big on disk

� Class files are bigger than executable of C

� Java is big in RAM

� Java takes lots of RAM
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JVM responsibilites
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JVM Responsibilities

Loader

Verifier & 

Initialization

Interpreter 

(& optimization)

Garbage Collector

Thread Scheduler

(also known as 

linking)

Java binaries
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Loader

� Find the class binaries and bring it to JVM

� When to load (classically)

� Loading is dynamic

� When a class is first time accessed

� e.g. new opcode is called or some static field is accessed etc
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verification & initialization

� When? (classically)

� After loading a class

� Dynamic as loading

� Some verification are perform also during .java to .class conversion

� They are usually repeated during class loading and accessing

� What?

� Verification checks that the binary representation of a class or interface is 

structurally correct 

� Examples: (1) operands are valid, (2) branch address are valid, (3) method 

signatures and method call matches, (4) private field is not access outside a 

class etc.

� Initialization

� Execute static initializers and initialize the static fields
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Interpreter or JIT-compiler

� Java binaries (class-files) are machine independent

� Make Java portable

� Interpreter Vs Just-In Time (JIT) Compiler

� Interpreter interpret one instruction at a time

� JIT compiler make most frequent code parts into machine code (e.g. loops) so 

that they can run faster
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Interpreter or JIT-compiler

� Why interpreter for mica2?

� Mica2 has Harvard architecture

� In Harvard architecture program and data memory are physically separated

� Flash: Program memory

� RAM: Data memory

� In order for JIT to work one has to write machine-code generated into the Flash

� Writing in the flash is slow

� Flash can be written in finite number of times

� Each program may has to write hundreds of time during its execution

� Interpreter

� Execute directly from Flash without any dynamic machine dependent code 

generated
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Interpreter or JIT-compiler

� TakaTuka Aim

� Make interpreter run faster based on recent research

� Make it light weight for RAM



27.10.2008 Fasial Aslam 14

University of Freiburg

Institute of Computer Science

Computer Networks and Telematics

Prof . Christian Schindelhauer
Garbage collection

� Garbage collection clears the memory for future use

� Unlike C, programmer do not have to worry about freeing 
memory

� When and how to do garbage collection

� Nothing specific

� Each JVM can handle it the way it prefers

� TakaTuka want to have

� Real time garbage collection

� A light garbage collection with no significant memory usage

� A garbage collection with small CPU usage

� Conserve battery lifetime
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Thread Scheduler

� Schedules what next thread to run

� May interrupt currently running thread for schedule a higher 
priority thread

� Threads are much better as compared to Event-driven model 

(TinyOS)

� But have significant memory overhead

� TinyOS Aims

� Scheduler that consume very small memory

� Current implementation is partially in Java and hence consumes RAM

� Threading model that use single stack for all the thread
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JVM concepts
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Class file format

ClassFile {

u4 magic; // it is always 0xcafebabe

u2 minor_version;     //minor and major version tell class-file format version

u2 major_version;

u2 constant_pool_count;   //size of the constant pool

cp_info constant_pool [constant_pool_count-1];  //the constant pool (CP)

u2 access_flags;    //tells if the class is public, private etc

u2 this_class;         //this class pointer (points to class name in the CP)

u2 super_class;     //super class pointer (note that only one)

u2 interfaces_count;  //number of interfaces

u2 interfaces [interfaces_count];  //interfaces (CP entry of class_info)

u2 fields_count;  //number of fields

field_info fields[fields_count];     //fields_info array

u2 methods_count;                       //field count

method_info methods[methods_count];  //method_info array

u2 attributes_count;   //attribute count

attribute_info attributes[attributes_count];    //attribute_info array

}
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Constant Pool

� A CP of a class is a collection of distinct constant values of 
variable size

� It reduces the size of Class file
� Each constant appears once in constant pool

� A constant usually is larger than two bytes

� Constant in constant pools are referred using two bytes

� A constant could be referred multiple times

� Example
� “Hello World” takes 11 bytes

� Let say it is used five times in a special class file format  without a CP

� Total number of bytes used 11*5 = 55

� In normal class file with CP

� Total number of bytes used 11+(2*5) = 22
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Bytecode

� Method_info has the bytecode array (in the code_attribute)

� Bytecode has a set of instruction

� Instruction
� One byte op-code

� Zero to many byte operand

� Op-code
� Tells what the instruction is

� One byte opcode in Java but only 204 instructions

� Operand
� Any input for the instruction

� Not all instructions have no operands

� Example
� iload 5   //load local variable #5 on the operand stack

� Opcode (Mnemonic form) is “iload”

� 5 is the operand
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Data structures

� Stack

� Java has stack based instruction set 

� Instead of a register base instruction set

� Many instruction either push or pop from operand stack

� For example iAdd will add two integers on the top of stack

� These values could be added by a function return or iload or some other way

� The operand stack of a function depends on the instructions sequence of that 

functions

� Heap

� Heap is the place where object are placed

� Heap size depends upon the number of objects in the memory and their local 

variables
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TakaTuka design and 

optimization
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Squawk design

� Split VM architecture

� Some part of JVM are perform on PC

� Rest on the mote

� Advantages

� Split JVM run faster

� Avoid memory consuming tasks

� Less run-time errors

� CLDC Compliance?

� Code must be verified and secure

� To make sure

� PC to mote data transfer must be 

through secure connection

Loader

Verifier & 
Initialization

Interpreter

Garbage Collector

Thread Scheduler

PC - side

Mote - side

Optimization

Secure connection
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TakaTuka design & goals

� Based on Squawk split-VM-architecture

� Better and more aggressive code optimization as compared to 

Squawk

� To make Java by > 95% smaller on disk and RAM

� To make it run much faster with an interpreter

� Motes sometimes cannot have JIT-compiler due to Flash limitation
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TakaTuka CP Optimization

� Traditional: Duplicate values in the project of per class CP

� Class A has “Hello World” in its CP

� Class B has “Hello World” in its CP

� TakaTuka: Global CP per project

� Class A and Class B now have single constant pool with one “Hello World”

� Traditional: Numeric types in CP has fixed length

� Long will always be 8 bytes and integer/short/boolean always 4 bytes

� Example long l = 5; will take 8 bytes in the CP

� Example static final short s = 7; will take 4 bytes in CP

� TakaTuka: Numeric types are variable length

� Example long I = 5; will take now only 1 byte

� Example static final short s = 7; will take one byte in CP
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TakaTuka CP optimization

� Traditional: Names resolution information

� Class, functions, fields names are written in the CP

� They are use for dynamic loading and debugging

� TakaTuka: Name resolution information

� Pre-loading on PC as in split-VM-architecture

� No naming information are transferred to motes
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TakaTuka bytecode 

optimization

� All bytecodes space is not used

� Java has 204 opcodes hence 52 are not used

� A program not use all 204 opcodes

� TakaTuka

� Use available opcodes (not used by a program)

� To create new instructions

� Objective is increase speed

� Reduce size
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TakaTuka bytecode 

optimization 

� TakaTuka: Two types of bytecode optimization

� Single instruction optimization

� Multiple instruction optimization

� In summary

� We reduce the size of existing single instructions

� Combine existing instruction

� Use all of opcodes not used by a program to make such new instructions

� Why increase speed

� Obvious that size decreases

� Speed increase because less number of instruction dispatch is required
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Your projects

� Five Projects

1. Dead code removal – pure java project

� Extendable to Bachelor thesis

� Group leader:

2. Multi-threading – mostly C project

� Extendable to Bachelor thesis

� Group leader:

3. 10 Tiny Projects – mostly C project

� Excellent start for a Bachelor thesis about Garbage collection or CLDC 

compliance

� Group leader:
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Your project

4. TinyOS integration --- TinyOS/NesC, Java and C

� Extendable to Bachelor thesis

� Group leader:

5. Garbage collection – C and some Java

� Extendable to Bachelor thesis

� Group leader:
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The End

� Thank you for listening


