

Algorithmen für drahtlose Netzwerke

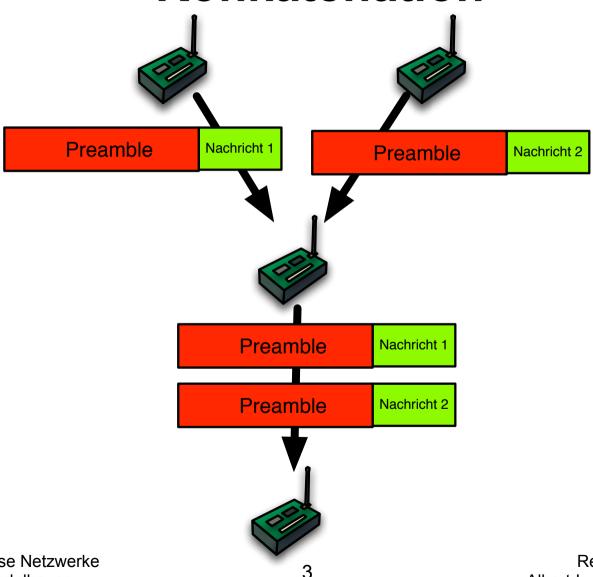
Drahtlose Sensornetze: Datenaggregation

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

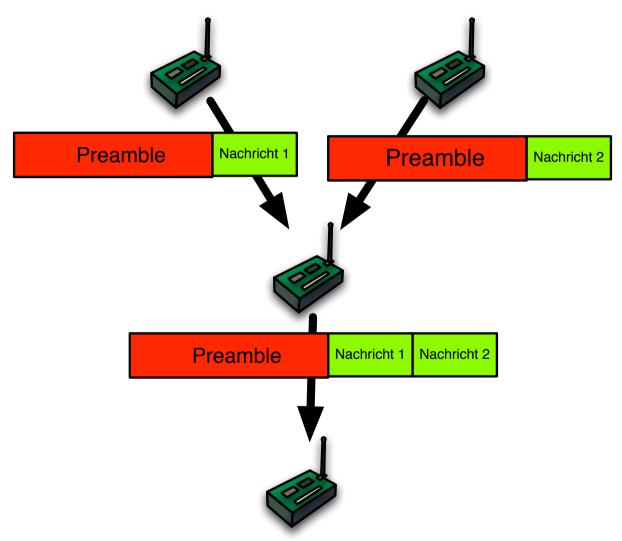
Datenaggregation

- In Multi-Hop-Netzwerken kann die Kombination von Nachrichten das Netzwerkverhalten verbessern:
- > Zusammenfassung (Konkatenation) von Nachrichten
 - Header-Länge wird relativ zur Nachricht kürzer
 - insbesondere bei Preamble Sampling
 - Zusatzaufwand für Kollisionsvermeidung geringer
- Neuberechnung der Inhalte
 - z.B. Wenn die Minimaltemperatur gefragt ist, dann genügt es einen (den kleineren) Wert weiterzuleiten
 - Hierzu werden die Messwerte über Zeitraum gesammelt

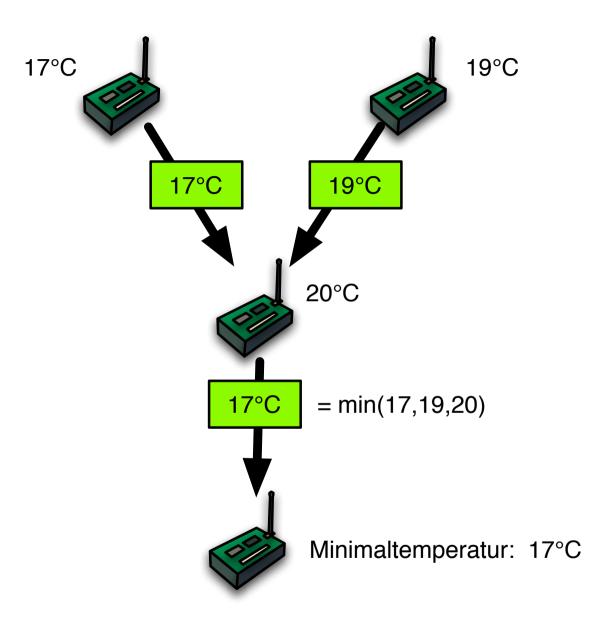
Keine Datenaggregation durch Konkatenation



Datenaggregation durch Konkatenation



Echte Datenaggregation durch interne Neuberechnung



Einfache Funktionen der Datenaggregation

Minimum

 Interner Knoten berechnet das Minimum der eingehenden Werte

Maximum

wie Minimum

Anzahl Quellen

Interner Knoten addiert die eingehenden Werte

Summe

Addition in internen Knoten

Aggregierbare Funktionen

Durchschnitt der Messwerte

- Übergebe Anzahl Messstationen n und die Summe aller Messwerte S
- Durchschnitt = S/n

Varianz der Messwerte

- Berechne Durchschnitt und den Durchschnitt der Quadrate der Messwerte
- $V(X) = E(X^2)-E(X)^2$

Nichtaggregierbare Funktionen

- Für folgende Funktionen ist keine effiziente Aggregation bekannt oder möglich
 - Median
 - p-Quantile
 - wenn p nicht sehr klein oder groß ist
 - Anzahl unterschiedlicher Werte
 - nur mit größeren Datenmengen ist eine Approximation möglich

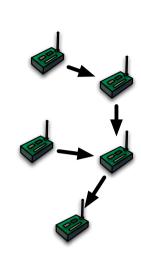
Routing-Modelle für Datenaggregation

- Adress-zentriertes Protokoll
 - Jeder Sensor sendet unabhängig zur Senke
 - Für (echte) Aggregation nicht nutzbar.
- Daten-zentriertes Protokoll
 - Die weiterleitenden Knoten können Nachrichteninhalt lesen und verändern

Kommunikationstrukturen

Baumstruktur

 Wenn es nur eine Senke gibt und jeder Quelle nur einen Pfad zur Senke verwendet, dann ist jeder Kommunikationsgraph in WSN ein Baum

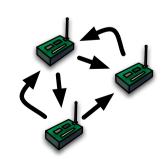


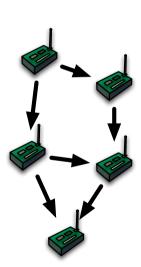
DAG (gerichteter azyklischer Graph)

- Allgemeinerer Fall
- Kann entstehen wenn die Pfade zur Senke sich ändern
- Evtl. schwierig Datenaggregation durchzuführen
 - z.B. Summe

Allgemeiner Graph

- Population Protocols
- werden nicht in WSN verwendet





Energieoptimale Baumstruktur

Gegeben:

- Menge von Datenquellen und eine Senke
- Kommunikationsgraph G

Gesucht:

- Steiner-Baum T
 - Teilgraph von G
 - verbindet alle Quellen und die Senke
 - Anzahl der Kanten wird minimiert

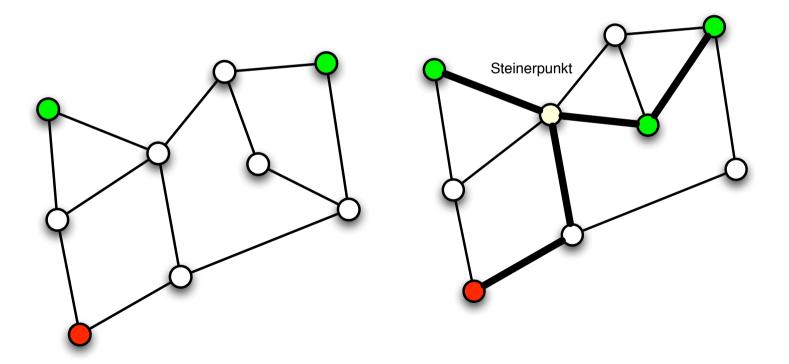
Alternativ:

- Kanten haben ein (Energie-) Gewicht
- Minimiere die Summe der Kantengewichte im Baum

Steinerbaum-Problem

Beobachtung:

 Quellen und Senken können gleich behandelt werden (Terminale/Endknoten)



Optimale Wahl zur Datenaggregation

Steiner-Baum

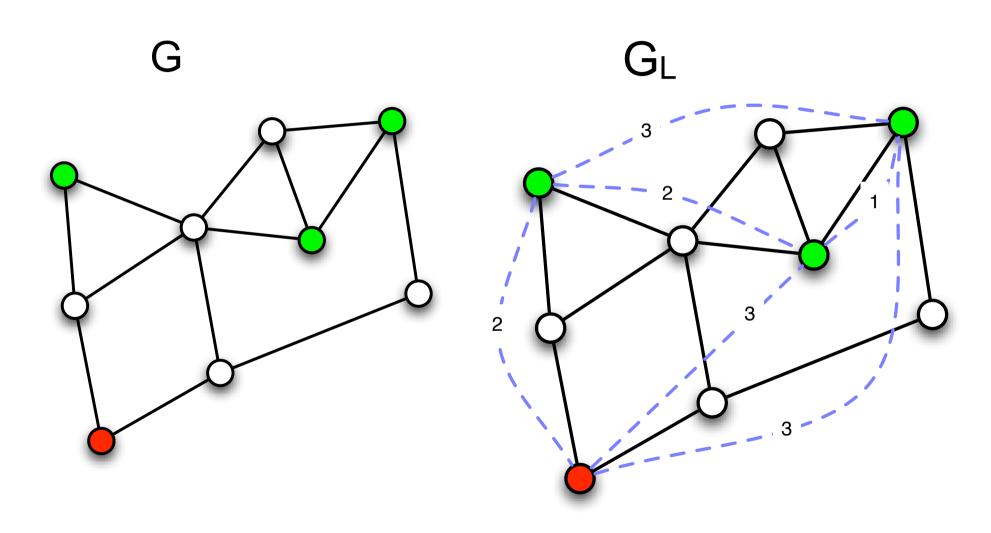
- minimaler Baum, der alle Datenquellen mit der Senke verbindet
- Berechnung des Steiner-Baums ist NP-schwierig
- Approximation
 - Das Steiner-Baum-Problem kann in polynomineller Zeit mit dem Faktor 2 approximiert werden
 - Bester bekannter Approximationsfaktor f
 ür Algorithmen in polynomineller Zeit: 1,55
 - Zelikovsky, Robins 2006

Approximation mit Hilfe von MST

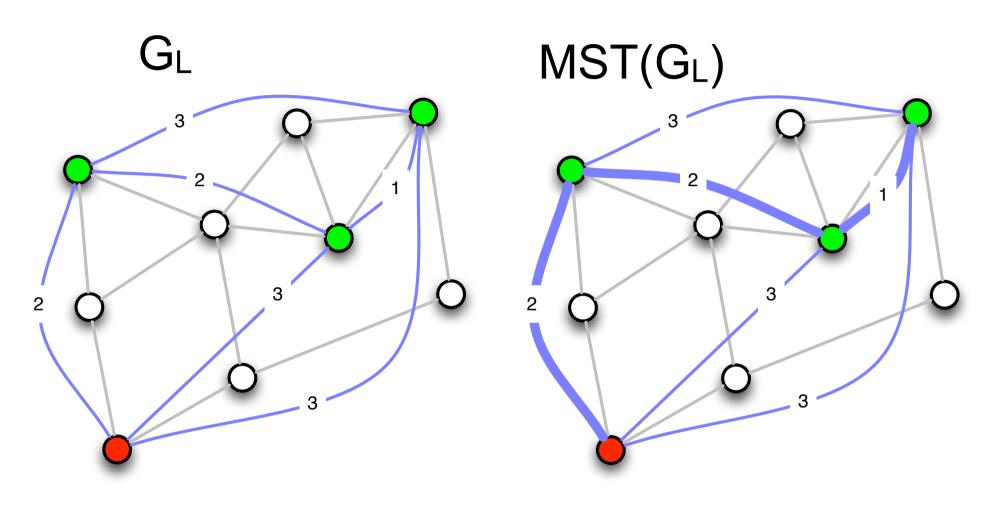
- Berechne zwischen allen Endknoten
 E den Abstand im Graph G
 - Definiere vollständigen Graph G_L
 mit Endknoten E und
 Kantengewicht gemäß dem
 Abstand in G
- ▶ Berechne minimal spannenden
 Baum MST in G_L
- ▶ Initialisiere Baum T mit leerer Menge

- ▶ Für jede Kante e=(u,v) aus MST
 - Finde kürzesten Pfad P von u nach v in G
 - Falls von P weniger als zwei Knoten in T sind
 - Füge P in T ein
 - Sonst
 - Seien p und q der erste und der letzte Knoten von P in T
 - Füge Teilpfad (u,p) und Teilpfad (q,v) von P in T ein
- Ausgabe: Steiner-Baum-Approximation T

MST-Steiner-Approximation Beispiel

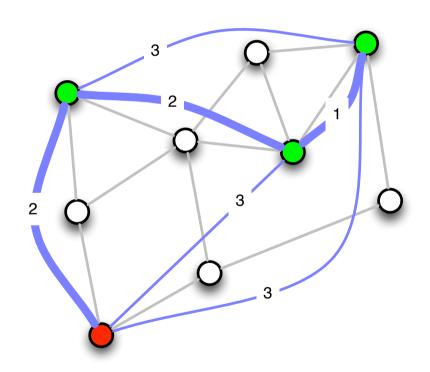


MST-Steiner-Approximation Beispiel

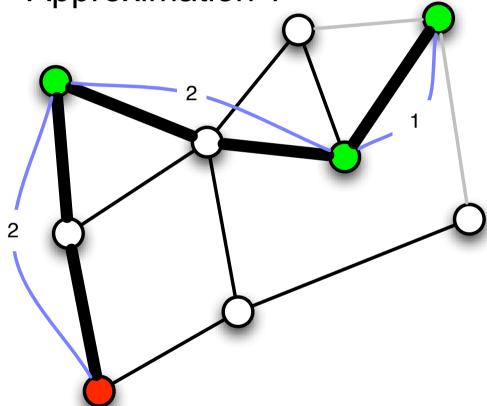


MST-Steiner-Approximation Beispiel

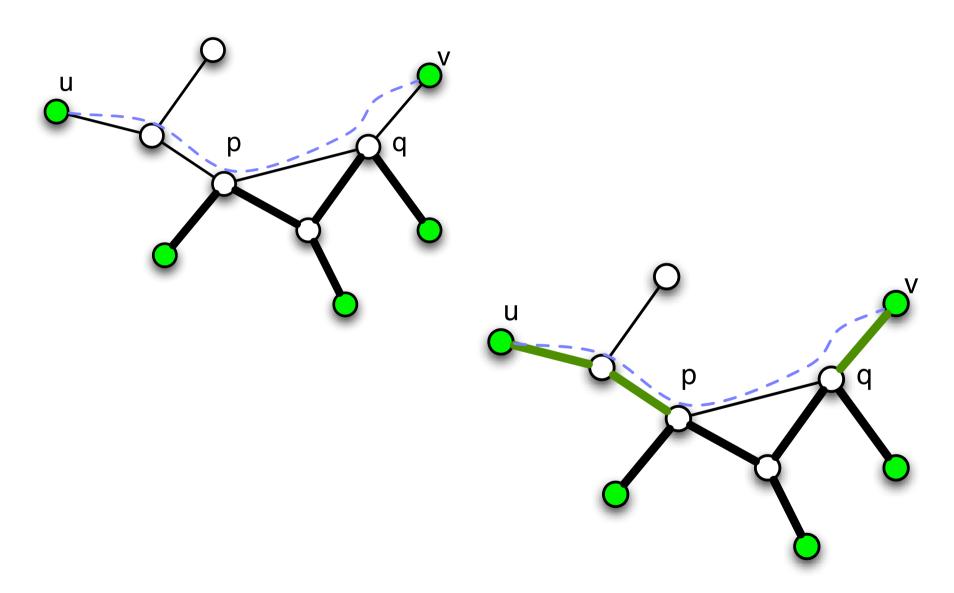
 $MST(G_L)$



Steinerbaum-Approximation T



Verhindern von Kreisen



Güte der MST-Approximation

▶ Satz

 Die MST-Approximation konstruiert in polynomieller Zeit einen Baum, dessen Kantensumme höchstens doppelt so groß ist wie der Steiner-Baum

Beweisidee:

- Gewicht von T
 - ≤ Länge Hamiltonscher Rundweg in G_L
 - ≤ Länge Euklidischer Rundweg in doppelten Steinerbaum
 - = zweimal Gewicht des Steinerbaums
- Ergibt Approximationsalgorithmus mit Güte 2

Algorithmen für drahtlose Netzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

