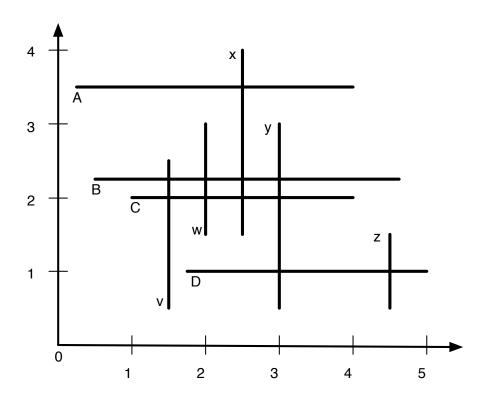
Submission deadline: Monday, Nov. 3, 2008 11:59:59 am CET

Exercises


Algorithm theory

Winter term 2008/09

Exercise sheet 2

TASK 1 (1 point):

Report all line segment intersections using the lecture's algorithm. Show each set S for each divide step and the output of the merge steps.

TASK 2 (1 point):

Consider the following polynomials over $\mathbb{C}[x]$:

$$p(x) = 17x^5 + 4x^3 - 3x^2 + 27$$

$$q(x) = 6x^4 + x^3 - 7x^2 + 2x + 1$$

$$r(x) = x^2(x-i)^3 + (x+i)^2$$

- 1. Compute $p(x) \cdot q(x)$ and count the number of computational steps you need (addition and multiplication).
- 2. Expand r(x) and then evaluate r(x) at all four principal roots of unity (1,i,-1,-i) using the Horner scheme.