

Communication Systems

DNS

University of Freiburg Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

What is DNS?

- Imagine: Try to remember the telephone numbers of your friends instead of their names
- What is DNS? What Internet users use to reference anything by name on the Internet
- The mechanism by which Internet software translates names to addresses and vice versa
- A lookup mechanism for translating objects into other objects
- A globally distributed, loosely coherent, scalable, reliable, dynamic database

DNS – the Internet Telephony Book

- ▶ 1970's ARPANET
 - Host.txt maintained by the SRI-NIC
 - pulled from a single machine
 - Problems
 - traffic and load
 - Name collisions
 - Consistency
- DNS created in 1983 by Paul Mockapetris (RFCs 1034 and 1035)
- Modified, updated, and enhanced by a myriad of subsequent RFCs (e.g. 3490-2)

DNS – Features

- A lookup mechanism for translating objects into other objects
- A globally distributed, loosely coherent, scalable, reliable, dynamic database
- Comprised of three components
 - A "name space"
 - Servers making that name space available
 - Resolvers (clients) which query the servers about the name space
- Data is maintained locally, but retrievable globally
 - No single computer has all DNS data
- DNS lookups can be performed by any device and any service
- Remote DNS data is locally cachable to improve performance

DNS – as an IP Service

- DNS is an IP based service
 - the IP world can live without DNS (the humans may not), but the DNS is dependent of IP
- DNS is application level protocol like others, e.g. HTTP, SSH, DHCP, ...
- Mostly using UDP as transport layer protocol, maximum DNS UDP packet size is 512Byte (restricts the size of DNS replies)
 - too long answers are truncated (client is told by truncate flag)
- Uses well-known port 53 for client-server-interaction, see e.g. /etc/services in Unix-like systems for the list of ports

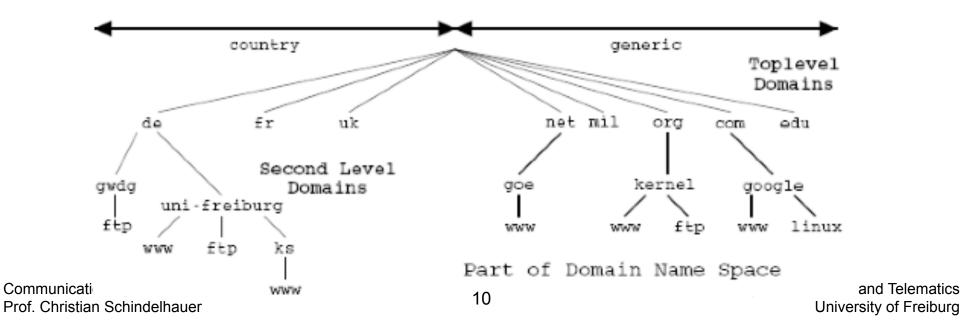
Loose Coherency

- The database is always internally consistent
 - each version of a subset of the database (a zone) has a serial number
 - serial number is incremented on each database change
- Changes to the master copy of the database are replicated according to timing set by the zone administrator
- Cached data expires according to timeout set by zone administrator

Scalability

- No limit to the size of the database
 - One server may have over 20,000,000 names
 - Not a particularly good idea
- "No limit" to the number of queries
 - 50,000 queries per second handled easily
- Queries distributed among masters, slaves, and caches
 - principles are explained little bit later

Reliability


- Data is replicated
 - Data from master server my be copied to several slaves
- Clients can query
 - master server
 - any of the copies at slave servers
 - use several caches
- Clients will typically query local caches first
 - see your DSL/cable router for DNS server assignments
 - e.g. local server for Freiburg university campus is 132.230.200.200 and 132.230.200.201 is caching server and server for uni-freiburg.de.
 - but you are free to contact e.g. the Freiburg university server

Dynamics

- Database can be updated dynamically
 - add/delete/modify of almost any record
 - example: www.dyndns.org and several other similar services use this characteristic
 - very short setting of TTL used
 - typically only one direction of name resolution from name to IP
 - integrated in many IAD (Internet Access Devices Telco lingo)
- Modification of the master database triggers replication
 - only master can be dynamically updated
 - thus creates a single point of failure

Concepts

- The name space needs to be made hierarchical to be able to scale
 - The idea is to name objects based on
 - location (within country, set of organizations, set of companies, etc)
 - unit within that location (institute within a faculty)

Naming within DNS

- Fully Qualified Domain Name (FQDN) of a specific host
- WWW.KS.UNI-FREIBURG.DE.
- Labels separated by dots
 - concept known from dotted quad notation of IP addresses (good readable representation of objects for humans)
 - given example not a host by definition. e.g.
 - www.rz.uni-freiburg.de (hostname webserver within the "subdomain" of the Comp. Dept.)
 - rz.uni-freiburg.de (hostname mailserver for the Comp.
 Dept. but subdomain name in the same moment)
- DNS provides a mapping from FQDNs to resources of several types
- Names are used as a key when fetching data in the DNS

Naming System and Conventions

- Domain names can be mapped to a tree
- New branches at the 'dots'
- No (real) restriction to the amount of branches
 - www.ks.uni-freiburg.de
 - ftp.uni-freiburg.de
 - www.google.de
 - electures.informatik.uni-freiburg.de
- Domains are "namespaces"
 - Everything below .de is in the de domain
 - Everything below uni-freiburg.de is in the uni-freiburg.de domain and in the de domain

Concepts - Namespace

- Each node has a label
 - The root node has a null label, written as "."
- Each node in the tree must have a label
 - A string of up to 63 (8 bit) bytes
- The DNS protocol makes NO limitation on what binary values are used in labels
 - RFCs 852 and 1123 define legal characters for "hostnames"
 - A-Z, 0-9, and "-" only with a-z and A-Z treated as the same
 - internationalization (IDNA: "umlaut", chinese character, ... domains) were defined in 2003 (RFC 3490)
 - int. names are made compatible (normalized) via nameprep algorithm (RFC 3491) and then via punycode (RFC 3492) translated to the allowed DNS character set

Concepts – Domain Name

- Sibling nodes must have unique labels
- The null label is reserved for the root node
- Thus a domain name is the sequence of labels from a node to the root, separated by dots ("."s), read left to right
 - name space has a maximum depth of 127 levels
 - domain names are limited to 255 characters in length
- A node's domain name identifies its position in the name space
- Traditional top level domain names are (generic three letters)
 - .mil., .gov., .edu., .net., .com., .org. each with a specific meaning (military, governmental, education, network infrastructure, (nonprofit) organizations, corporations)
- Country domains (two letters in ISO standard 3166)

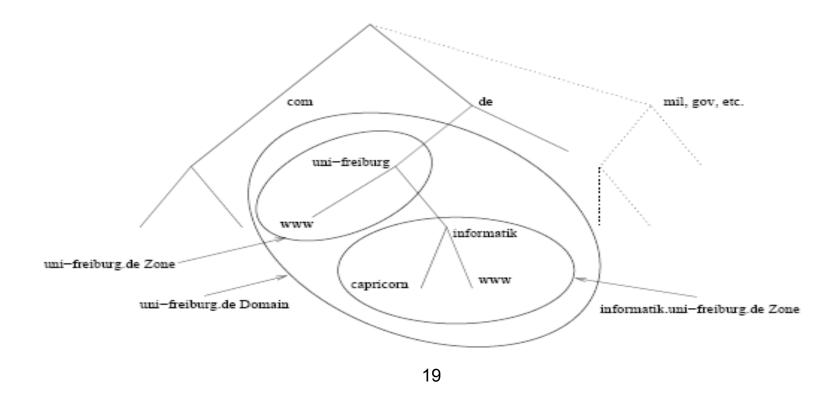
Concepts – Domain Name Wars

- Explosive growth the Internet lead to growth of domain name space two
 - e.g. com and de domains are biggest toplevel domains with more the 2 million entries each
- As introduced the three letter endings had a certain meaning, but this is mostly obsoleted
 - you will find many corporations with more than one top level domains: ibm.com,net,org,us,de,... so the original idea of name space distribution is lost ...
 - most of the multi entries are redirectors
 - typical solution now to find: one main top level domain like wikipedia.org and national versions via subdomains like en,de,....wikipedia.org
- Lots of law suits filed in the beginning years of the Internet over DNS issues (name clashes, private persons vs. corporations, fraught, ...)

Concepts – Domain Name Assignments

- The resultant controversy caused the US Government (Dept. of Commerce) to take a much more active role
 - official governmental policy (the White Paper) on Internet resource administration created
- That policy resulted in the creation of ICANN
 - in the beginning: non profit organization (partly) with elected members
 - election procedure was revoked
- Main task: Decide on new top level domain labels, e.g. introduced
 - .name., .info.,.biz., ...
 - .eu., .asia., ... top levels ...

Concepts – DNS and ICANN


- Role of ICANN is to oversee administer Internet resources including
 - Addresses
 - Delegating blocks of addresses to the regional registries
 - Protocol identifiers and parameters
 - Allocating port numbers, OIDs, etc.
 - Names
 - Administration of the root zone file
 - Oversight of the operation of the root name servers
- Most important: ICANN oversees modification of the zone file that makes up the Internet DNS root

Concepts - Delegation

- Administrators can create subdomains to group hosts
- According to geography, organizational affiliation or any other criterion
- An administrator of a domain can delegate responsibility for managing a subdomain to someone else
 - But this isn't required
- The parent domain retains links to the delegated subdomain
- The parent domain "remembers" who it delegated the subdomain to

Concept – Zones and Delegations

- Zones are "administrative spaces"
- Zone administrators are responsible for portion of a domain's name space
 - authority is delegated from a parent and to a child

Concept – Delegations and "Forwards"

- DNS "Forward"
 - Generally, where the A records (few slides later) are
 - "Domain Names" obtained from a parent zone
 - registrar if .com, .biz, .org., and some others
 - registry if a country code (DENIC in Frankfurt for de.)
 - another organization in other cases
- Contractual outside organization
- Formal another part of a large organization
- Informal from yourself to yourself

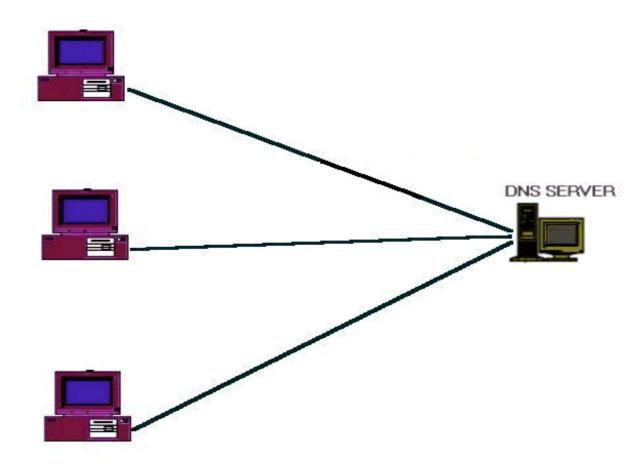
Concept – DNS Hierarchy

- The DNS imposes no constraints on how the DNS hierarchy is implemented except
 - A single root point of vulnerability: if root nameservers are exchanged the view on data might be completely different
 - The label restrictions
- If a site is not connected to the Internet, it can use any domain hierarchy it chooses
 - Can make up whatever TLDs you want
- Connecting to the Internet implies use of the existing DNS hierarchy

Operating the database - Name Servers

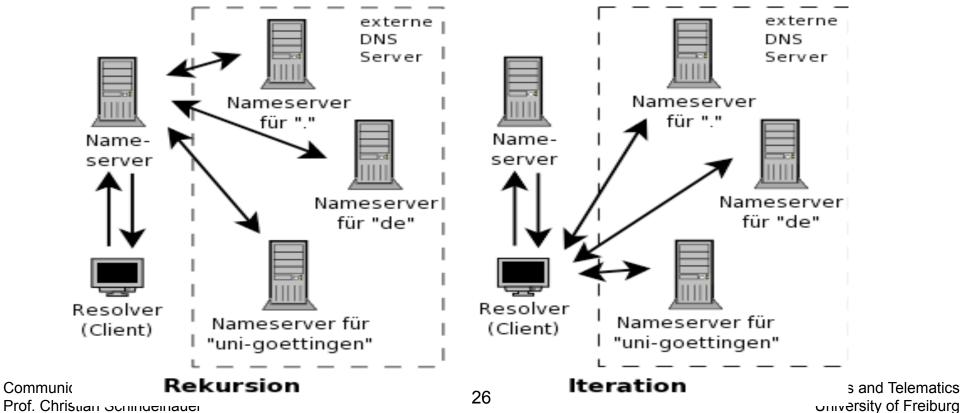
- From the idea and protocol (last lecture) to the infrastructure
- Name servers answer 'DNS' questions.
- Several types of name servers
 - authoritative servers
 - master (primary)
 - slave (secondary)
- (Caching) recursive servers
 - also caching forwarders
 - mixture of functionality

Name Servers - Conceptual


- Authoritative
 - Give authoritative answers for one or more zones.
 - The master server normally loads the data from a zone file
 - A slave server normally replicates the data from the master via a zone transfer
- Recursive
 - Recursive servers do the actual lookups; they ask questions to the DNS on behalf of the clients
 - Answers are obtained from authoritative servers but the answers forwarded to the clients are marked as not authoritative
 - Answers are stored for future reference in the cache

Name Servers - Implementation

- Primary DNS Server (often called master)
 - maintains the master zone information
 - all changes to the information of the domain take places here
 - get propagated to the secondary servers at the Refresh interval
- Secondary DNS Server (often slave)
 - backs up the primary DNS server for a zone
 - more than one possible
- Caching
 - typically DNS of dial-in providers
 - (DSL, cable, WLAN, GPRS/UTMS, ISDN, ...)
 - improve efficiency (traffic reduction not really relevant)
 - DNS servers add answers (for a certain amount of time) from other servers to their memory


Resolver – the DNS Client

• DNS operates in classical client-server-model

Recursion vs. Iteration

- Resolvers ask the questions to the DNS system on behalf of the application
 - asked server typically uses recursion •

Prof. Christian Schmuchhauer

Name Resolution

- Name resolution is the process by which resolvers and name servers cooperate to find data in the name space
- To find information anywhere in the name space, a name server only needs the names and IP addresses of the name servers for the root zone (the "root name servers")
 - The root name servers know about the top-level zones and can tell name servers whom to contact for all TLDs
- A DNS query has three parameters
 - A domain name (e.g., www.ks.uni-freiburg.de),
 - Remember, every node has a domain name!
 - A class (e.g., IN), and
 - A type (e.g., A)

Resolver – the DNS Client

- DNS clients that access name servers
 - Query name server
 - Interpret response
 - Return the information to the program requesting it
- Users do not interface directly with a DNS resolver
- Normally implemented in a system library (e.g, libc)
- gethostbyname(char *name);
- gethostbyaddr(char *addr, int len, type);

Resource Records (Basic Set)

Function	Name	Explanation
Address Records	A	Map hostname to IPv4 address e.g. <i>www.unifreiburg.de. IN A 132.230.6.75</i>
Canonical Name Records	CNAME	make one domain name an alias of another e.g. <i>www.uni-freiburg.de. IN CNAME www.ruf.uni-</i> <i>freiburg.de.</i>
Mail Exchange Records	МХ	Specify the mail server in the domain e.g. <i>Foobarbaz.com IN MX 10 eric.foobarbaz.com</i>
Pointer Records	PTR	Map IP address to host name (reverse resolution) e.g. <i>75.6.230.132.in-addr.arpa. IN PTR www.ruf.uni-</i> <i>freiburg.de</i>
Name Server Records	NS	state the authoritative name servers for the domain. e.g. <i>foobarbaz.com. IN NS draven.foobarbaz.com.</i>
Start Of Authority Records	SOA	Specify that the DNS server provides authoritative information about a domain.

Resource Records

- Resource records consist of it's name, it's TTL, it's class, it's type and it's RDATA
- TTL is a timing parameter
- IN class is widest used
- There are multiple types of RR records
- The SOA and NS records are used to provide information about the DNS itself
 - provides information about the start of authority, e.g. the top of the zone
- The NS indicates where information about a given zone can be found

Resource Records (SOA)

- Provides zone wide
 - Timing parameter
 - Master server
 - Contact address
 - Version number
- net. 3600 IN SOA A.GTLD-SERVERS.net. nstld.verisign-grs.com.
 (2006021301; serial
 - 30M ; refresh
 - 15M; retry
 - 1W; expiry
 - 1D); neg. answ. ttl

Resource Records (NS)

- Delegation is
 - the "glue" of the DNS system
 - is done by adding NS records:
 - sub.goe.net. NS ns1.sub.goe.net.
 - sub.ripe.net NS ns2.sub.goe.net.
- How to get to ns1 and ns2... addresses needed
 - Add glue records to so that resolvers can reach ns1 and ns2
 - ns1.sub.ripe.net. A 10.0.0.1
 - ns2.sub.ripe.net. A 10.0.0.2
- Glue is 'non-authoritative' data (data lives on another server, as seen in Fridays exercise)

DNS support in IPv6

- Current DNS records store 32-bits IPv4 addresses. They must be upgraded to support the 128-bits IPv6 addresses.
- A new resource record type 'AAAA' is defined, to map a domain name to an IPv6 address
- Example:
 - www.ipv6.uni-muenster.de. IN •
 - tolot.ipv6.uni-muenster.de. IN •
 - ns.join.uni-muenster.de. IN AAAA •
 - ns.join.uni-muenster.de. IN Α •

- CNAME tolot.ipv6.uni-muenster.de.
- AAAA 2001:638:500:101:2e0:81ff:fe24:37c6
- 2001:638:500:101::53
- 128,176,191,10

DNS Support in IPv6

- New domains IP6.INT and IP6.ARPA are defined, to map an IP v6 address to a domain name.
- An IP v6 address is represented by a sequence of nibbles (nibble string) separated every four bits by dots with the suffix ".IP6.INT" or ".IP6.ARPA".
- Example:
 - ; \$ORIGIN 0.0.5.0.8.3.6.0.1.0.0.2.ip6.int.
 - 6.0.8.3.5.b.e.f.f.f.2.0.1.0.2.0.0.0.1.0 IN PTR atlan.ipv6.uni- muenster.de.
 - 5.f.4.7.8.d.e.f.f.f.8.1.0.e.2.0.0.0.2.0 IN PTR lemy.ipv6.uni-muenster.de.
 - or
 - ; \$ORIGIN 0.0.5.0.8.3.6.0.1.0.0.2.ip6.arpa.
 - 6.0.8.3.5.b.e.f.f.f.2.0.1.0.2.0.0.0.1.0 IN PTR atlan.ipv6.uni- muenster.de.
 - 5.f.4.7.8.d.e.f.f.f.8.1.0.e.2.0.0.0.2.0 IN PTR lemy.ipv6.uni-muenster.de.

DNS Support in IPv6

- Existing queries are extended to support IP v4 and IP v6
- When both 'A' and 'AAAA' records are listed in the DNS, there are three different options:
 - return only IPv6 address
 - return only IPv4 address
 - return both IPv4 and IPv6 addresses
- The selection of which address to return, or in which order to return can affect what type of IP traffic is generated
- BIND 9.X is fully IPv6 compliant
- Problem: name space fragmentation
- Not all operating systems and not all DNS servers offer IPv6 transport lookups

Timers in DNS

- TTL is a timer used in caches
 - An indication for how long the data may be reused
 - Data that is expected to be 'stable' can have high TTLs
- SOA timers are used for maintaining consistency between primary and secondary servers
 - might be given in seconds (integer)
 - abbreviations possible, like on slide before
 - W-Week
 - M Minute
 - D Day
- Because of timing issues it might take some time before the data is actually visible at the client side

DNS Extensions - ENUM

- DNS is a rather successful concept for the distribution of vital network information (mostly by now mapping names to IPs and vice versa)
- DNS can also be used to map phone numbers to URIs
- Addressing (naming) on the Internet:
 - IP addresses: 132.230.121.6
 - domain names: www.ks.uni-freiburg.de
 - Uniform Resource Identifiers (URIs)
 - mailto: dsuchod@rz.uni-freiburg.de
 - http://132.230.6.72
 - http:/www.ks.uni-freiburg.de
 - sip:dirk@siphone.de

DNS - ENUM

- Voice-over-IP is an emerging trend for some years
 - problem: how to merge the totally different numbering schemes in the IP and telephony world
- Addressing (numbering) on the PSTN:
 - E.164 "phone" numbers: +49 761 203 4698
- Why telephone numbers any more?
 - people know how to use phone numbers
 - billions of devices only use numeric key pads, especially wireless devices
 - many VoIP customers use normal phones with terminal adapters or IP phones with numeric keypads

DNS – ENUM - Definition

- Why telephone numbers any more?
 - URIs like sip:user@domain have advantages and disadvantages
 - on of their biggest problems: they cannot be dialed on the PSTN
 - Phone numbers may be used for other services on the Internet (Instant Messaging, Video, ...)
 - URI's and telephone numbers will co-exist for the indefinite future
- So Electronic or E.164 NUMber mapping is defined by the Internet Engineering Task Force (IETF) in RFC3761

DNS – ENUM – e164.arpa tree

- The e164.arpa domain was selected by the Internet Architecture Board specifically for this purpose with the concurrence of the ITU
- .ARPA is designated by the IAB for Internet Infrastructure issues
 - in-addr.arpa (reverse IP address look up)
- .ARPA is a well managed, stable and secure operational environment under IAB supervision
- Single domain structure under e164.arpa becomes the authoritative "root" for E.164 telephone numbers

DNS – e164.arpa tree - Tiers

- ETSI (European Telephone Standardization Institute) defines so called Tier level
 - Tier-0 The registry operator for e164.arpa and its name servers
 - Tier-1 Registry for a "country": e.g. 4.4.e164.arpa
 - Codes are not just for countries: satellite operators, multinational telcos, international free phone numbers
 - Tier-2 Registrars who process registration requests
 - Not area code level delegations as the terminology might suggest
- Problems would occur if alternate trees are operated ...

DNS – ENUM

- Why DNS and not some other Internet service?
- ► DNS
 - It's there ...
 - It works...
 - It's global...
 - It scales...
 - It's open...
 - Anyone can use it...

ENUM – Major Benefits

- The mapping of "Telephone Numbers" to Uniform Resource Identifiers (URIs) using the Domain Name System (DNS) in the domain e164.arpa
 - URIs are used to identify resources on the Internet (e.g. http://enum.nic.at)
 - The purpose of ENUM is to enable the convergence between the PSTN and the Internet
- ENUM can be used for any URI = any service
 - mailto, fax, video, ...
 - sms, mms, ...
 - h323, pres, im, ...
 - http, ftp, certificates, locations, ...

ENUM – Concepts

- ENUM should not be mistaken for:
 - A real-time call forwarding service
 - ENUM should not be used to implement a follow-me service, modifying ENUM entries in real-time depending on location, time-of-day, etc.
 - This should be done as a SIP service at the SIP proxy (later lectures)
 - A "presence" service presence should also be implemented at the SIP proxy (e.g. with SIMPLE)
 - ENUM does not provide NOTIFY and also no policies
 - But ENUM may point to a presence service or to a geo location, e.g. for a company or a hotel

ENUM – DNS Mapping

- take an E.164 phone number
- +49 761 203 46 98
- remove the "+", spaces and other non cipher characters
- turn it into a FQDN
- 8.9.6.4.3.0.2.1.6.7.9.4.e164.arpa.
- returns list of URIs
- sip:dirk@siphone.de
- query the DNS (for NAPTR)
- mailto:dsuchod@rz.uni-freiburg.de
- sms tel:+497612034698

DNS – New Record Type -NAPTR

- NAPTR resulting name looked up in the DNS
- Horribly complex :-)
 - Define preferences and order to reach services
 - Can include regular-expressions and substitutions
 - Ultimately identify URIs
 - Example:
 - NAPTR 100 10 "u" "sip+E2U" \ "!^.*\$! sip:jim@sip.uni-freiburg.de!"

DNS – New Record Type -NAPTR

- How to reach a SIP gateway for some phone number
- Order and Preference fields allow intelligent selections of services & protocols to be made:
 - "Send email if the SIP gateway is unable to process fax now"
 - "Don't call my cellphone when I'm overseas"
 - "Divert to voicemail if busy"
- There are other extensions to DNS not handled in this course (key service for secure transactions, IDNS, ...)

Communication Systems

DNS

University of Freiburg Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

