

Communication Systems

IPSec

University of Freiburg Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Organization

- I. Data and voice communication in IP networks
- II. Security issues in networking
- III. Digital telephony networks and voice over IP

Network Security on Different Layers

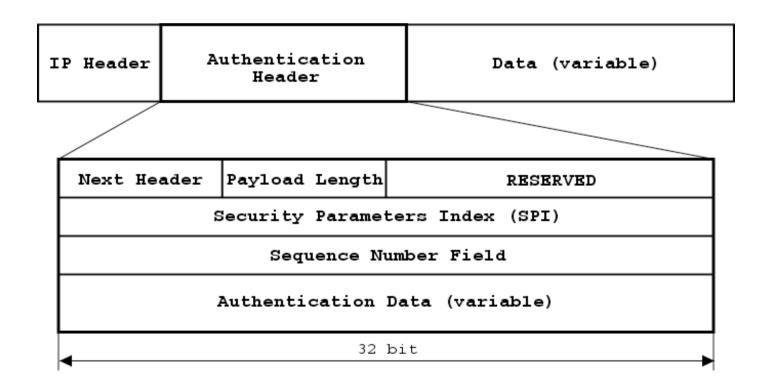
- Talked of transport Layer (SSL/TLS): easy, widely used, classical web security and application Layer (PGP, S/ MIME) in last practical
- Today: Move down within the network stack to the network layer: IPsec as a general means to secure all higher level protocols between IP networked hosts

		S/MIME	PGP	НТТР	SMTP			
Open VPN	Kerbe- ros	SMTP		SSL o	r TLS		нттр	SIP
UDP		тс	P	тс	P	TCP / UDP		
IP		IF	0	IF	2		IP / IF	Sec

Communication Systems Prof. Christian Schindelhauer Computer Networks and Telematics University of Freiburg

- IP level security -> IPsec
- IPSEC is Internet Protocol SECurity
- The level above the network layer is the place where IPsec was put - No alteration to the IP was needed, simply the transportation protocol was interchanged (or and additional security header introduced)
- Remember security requirements given in an earlier lecture
- It uses strong cryptography to provide both authentication and encryption services
 - Authentication ensures that packets are from the right sender and have not been altered in transit
 - Encryption prevents unauthorized reading of packet contents

- IPSEC tries to provide a framework for encrypting the whole IP traffic that might occur
- But in reality it mainly allows to build secure tunnels through untrusted networks
- Every packet passing through the untrusted net is encrypted by the IPSEC gateway machine and decrypted by the gateway at the other end
- The result is another implementation of a Virtual Private Network (VPN)
 - Seen OpenVPN in practical as another example


- IPSEC protocols were developed by the IETF, they are part of the IP version 6 (next generation Internet protocol, see earlier lecture)
- In theory a lot of networking software firms implement the IPSEC standard, but in real only a few products really operate
- With Linux there are several Free/Open/StrongSWAN implementations of IPSEC for the 2.6 kernel series available
- StrongSWAN implements IKE 2 and introduces a new user space daemon for key exchange
- For logging on the wireless campus LAN Cisco's IPsec implementation is used (operable with Cisco VPN concentrator (only))
 - Open source tool (vpnc) is available too (useful for PDAs and other embedded devices without official Cisco support, practical part)

- IPsec can be used on any machine which does IP networking
- Dedicated IPsec gateway machines can be installed wherever required to protect traffic of LANs
- IPSEC can also run on routers, on firewall machines, on various application servers, and on end-user desktop or laptop machines
- Three protocols are introduced
 - AH (Authentication Header) provides a packet-level authentication service
 - ESP (Encapsulating Security Payload) provides encryption plus authentication
 - IKE (Internet Key Exchange) negotiates connection parameters, including keys, for the other two

- IPsec Authentication Header (AH) is added after the IP header
- Authentication ensures that a message originated from the expected sender and has not been altered on route
- For Authentication exchange of passwords or similar is needed – that means to establish a security association (SA)
- A common solution to this problem is a challenge-response system. It defeats simple eavesdropping and replay attacks

IP sec - Authentication Header

 AH's position in the IP packet (next header concept taken from the IPv6 standard, refer to earlier lecture)

IP sec - Authentication and AH

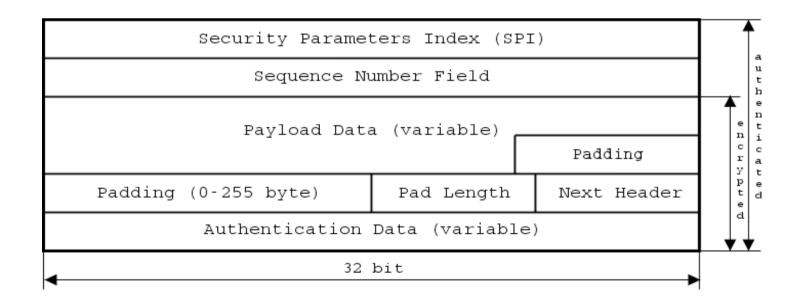
- Header:
 - Contains a sequence number of four byte length
 - Maintains the length of the header itself (in unit of 32/64 bits)
 - Stores information on next header (IP: 4, TCP: 6, UDP: 17, ESP: 50, AH: 51 -> see /etc/protocols) -> depends on IPSEC mode
- IPSEC could be operated in two modes
 - Tunnel mode is used between firewalls or network host/end node and firewall
 - Transport mode is applied when IPSec is used end-to-end

IP sec - Authentication and AH

- In tunnel mode, the original IP packet will be kept intact (But: MTU size change – payload available to higher level protocols - results in shorter packets ...)
- AH used in tunnel mode:

		original IP	datagram
IP Header	Data ((variable)	

tunneled IP datagram


Neuer IP Header	IP Header	Data (variable)
--------------------	-----------	-----------------

datagram witt auth header in tunnel mode

Neuer IP Header	Auth. Header	IP Header	Data (variable)	
authenticated				

- Encapsulated Security Payload is the IPsec protocol which provides encryption
- It can also provide authentication service and may be used with null encryption (which should be used for testing and analysis only)
- Its header contains
 - Next header/protocol type (one byte)
 - Padding length (in units of octets one byte)
 - Padding (variable length)

- Encapsulated Security Payload Header
 - SPI (as known from AH 4 bytes)
 - Sequence number (4 bytes)
 - Payload data (variable)

- ESP in fact puts information both before and after the protected data
- Example of ESP packet in tunnel mode

	original IP datagram
IP Header	Data (variable)

tunneled IP datagram

Neuer IP Header	IP Header	Data	(variable)
--------------------	-----------	------	------------

ESP Datagram im tunnel mode

Neuer IP Header	ESP Header	IP Header	Data (variable)	ESP Trail	ESP Auth
	4	encrypted authenticated			

- For encryption, DATA, padding, padding length and next header are encrypted
- For authentication, all fields are included
- AH versus ESP
 - AH just does integrity
 - ESP does both encryption & integrity
 - If just integrity, use AH or ESP
 - If both integrity and encryption, then use both AH and ESP, or just use ESP

IP sec – Conclusion

- IP sec is rather "heavy stuff"
 - No simple plug-and-play implementation
 - Not suited to encrypt the whole Internet by now only encryption of predefined connections by now
 - There are some suggestions to use "opportunistic encryption" - check if IP sec is available and use secure channel then
- Several vendors offer several solutions
 - Not all vendor solutions compatible with each other
 - High load on administration
- But IP sec in every day use to connect branches of firms / organizations via VPN (virtual private networks) over the insecure Internet

IP sec – Conclusion

- IP sec implementation of Ciscos concentrator series offer relatively easy adaptation of IP sec to end user devices
 - Used for the university WLAN simple administration on both servers and clients side
 - But:
 - Xauth protocol to use username/password instead of certificates – shared secret ("community string/password")
 - code is binary object only (nobody can tell if code is secure)
 - Unclean position in the Linux network stack
 - Prevention of local LAN access could be easily broken by recompilation of module wrapper
 - Free implementation is available for a while proper Linux network device, support for unsupported (by Cisco) platforms

IP sec – Conclusion

- IP sec implementation of standard Linux kernels not without problems
 - No standard network interface is used (check in practical part to follow)
 - Difficult for firewall setup scenarios (on firewalls, package filters the upcoming lecture)
 - Different implementations available to improve usability and security (strongSWAN, developed at some Swiss University)

Literature

- General/RFC
 - S. Kent (BBN Corp) and R. Atkinson: "RFC 2406 IP Encapsulating Security Payload (ESP)"
 - Same Authors: "RFC 2402 IP Authentication Header", Internet Engineering Task Force (IETF)
 - RFC 4306: IKE Version 2, Internet Engineering Task Force (IETF)
 - Lots of more RFCs on IPsec
- Linux IPsec implementations
 - Old implementation http://www.freeswan.org
 - 2.6 Kernel implementation
 - StrongSWAN/IKE 2 http://strongswan.org/

Communication Systems

University of Freiburg Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

