

Communication Systems

Firewalls

University of Freiburg Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Organization

- I. Data and voice communication in IP networks
- II. Security issues in networking
- III. Digital telephony networks and voice over IP

Network Security – "the magic device": Firewall

- Take a completely new track now ...
- Firewalls are traffic / packet filters that operate on different layers of our OSI protocol stack
- Try for a definition: "A Firewall is a network security device designed to restrict access to resources (information or services) according to a security policy"
- Important remark is to be made here:
 - Firewalls are not a "magic solution" to network security problems, nor are they a complete solution for remote attacks or unauthorized access to data!!
 - Firewalls could be circumvented in several ways and may increase the complexity of network and this way decrease the level of security!

- A Firewall is a often a network security device, but can be or simply is implemented directly into the end systems
- It serves to connect two parts of a network a control the traffic (data) which is allowed to flow between them
- Often installed between an entire organization's network and the Internet
- A Firewall is always the single path of communication between protected and unprotected networks
 - Of course there are special cases of multiple Firewalls, redundant connections, fault-tolerant failover etc.
 - A Firewall can only filter traffic which passes through it
 - If traffic can get to a network by other means, the Firewall cannot block it

- Types of firewalling concepts:
 - (MAC / Ethernet frame filter)
 - Packet filter
 - Circuit-level proxy
 - Stateful packet filter
 - Application-level proxy
- Filtering on data link layer
 - Ethernet packets contain source and destination addresses: MAC
 - Allow only frames to be delivered from known sources, block frames with unknown MACs

- Filtering on network layer
 - Source & destination IP addresses
 - Source address
 - Destination address
 - * Both are numerical it is not easy for a Firewall to deal with machine or domain names
 - * e.g. www.hotmail.com
 - Request: client = source, server = destination
 - Response: server = source, client = destination

- Filtering on transport level
 - This is where we deal with (mostly) TCP and UDP port numbers
 - e.g.: 25 SMTP sending email (TCP)
 - 110 POP3 collecting email (TCP)
 - 143 IMAP collecting email (TCP)
 - 389 LDAP directory service (TCP)
 - 636 LDAPS TLS secured directory service (TCP)
 - 80 HTTP web pages (TCP)
 - 443 HTTPS secure web pages (TCP)
 - 53 DNS name lookups (UDP)
 - 68, 69 DHCP dynamic end system IP config (UDP)

- Most Firewalls and their administrators assume that the port number defines the service – not necessarily
 - who could stop me from sending or receiving mail over the HTTP port
 - who could stop users from tunneling all their IP traffic over an open port (demonstration of tunnels in Christmas lecture)
- Here we get major problem: If users are blocked from using a service and try to avoid the blocking firewall they might find a way through – the admin still thinks all is fine with the network, but the situation might be even worse than without firewall at all ...

- Layer 7 Application
 - There is where we find all the 'interesting' stuff ...
 - Web requests
 - Images
 - Executable files
 - Viruses
 - Email addresses
 - Email contents
 - Usernames
 - Passwords

- Packet filter a special router that have the ability to throw packets away independently of network congestion
- Examines TCP/IP headers of every packet going through the Firewall, in either direction
- Choice of whether to allow or block packet based on:
 - (MAC source & destination)
 - IP source & destination addresses (layer 3)
 - TCP / UDP source & destination ports (layer 4)
- Stateful filter
 - Same as a packet filter, except initial packets in one direction are remembered, and replies are automatically allowed fo
 - Simpler rules than simple port based packet filter

Network Security – Filtering of Packets

- Packet filter use rules specify which packets are allowed through the Firewall, and which are dropped
 - Rules must allow for packets in both directions
 - Rules may specify source / destination IP addresses, and source / destination TCP / UDP port numbers
 - Certain (common) protocols are very difficult to support securely (e.g. FTP, IRC, SIP, ...)
 - Low level of security
- Stateful packet filter
 - Packet filter which understands requests and replies (e.g.: for TCP: SYN, SYN-ACK, ACK)

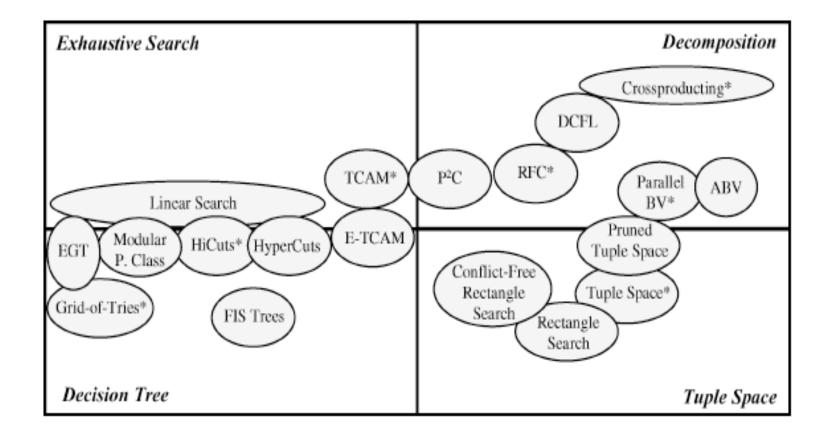
Network Security – Packet Filters

- Stateful packet filter
 - Rules need only specify packets in one direction (from client to server – the direction of the first packet in a connection)
 - Replies and further packets in the communication are automatically processed
 - Supports wider range of protocols than simple packet filter (eg: FTP, IRC, H323)
 - Medium-high level of security
- But how to handle the packets traveling through the network stack?
- Packet Classification Problem
 - Individual entries for classifying a packet are called **rules**

Network Security – Filter Rules

- Rules
 - Each rule is a combination of K values (one for each header field in the packet), a priority and an action Ai.
 - For each entry in a rule different kind of matches are allowed:
 - exact match (e.g. protocol or packet flags/options)
 - prefix match (e.g. blocking subnetwork)
 - range match (e.g. port number ranges)
 - The classifier or rules database consists of a finite set of rules (R₁, ... R_n) ordered by descending priority
 - A packet P matches R_i if all the header fields F_j, (j = 1...K) match the corresponding fields in R_i
 - The Packet Classification Problem is to determine the matching rule with highest priority for each incoming packet

Network Security – Packet Classification


- Packet Classification Problem
 - Todays network links easily reach 1 GBit/s
 - Fiber optic links can operate at over 40 GBit/s
 - A huge amount of current Internet traffic is TCP which transmits ACK packets (40 Bytes each) or VoIP RTP/ UDP packets of ~80 Byte
 - Therefore a worst-case scenario could be a constant stream of ACK packets:
 - E.g. a saturated 10 GBit/s link carries more then 31/15 million packets per second

Network Security – Classification Algorithms

- Packet Classification Problem: Algorithm design
 - Exhaustive Search
 - Test all rules (e.g. linear search)
 - Decision Tree
 - Construct a decision tree from filter rules. Use packet fields to traverse the tree
 - Decomposition
 - Decompose multiple field search in instances of single field searches and perform independent searches. Finally combine results
 - Tuple Space
 - Partition filter set according to the number of specified bits in filter.
 Probe partitions or subsets with simple exact match searches

Network Security – Classification Algorithms

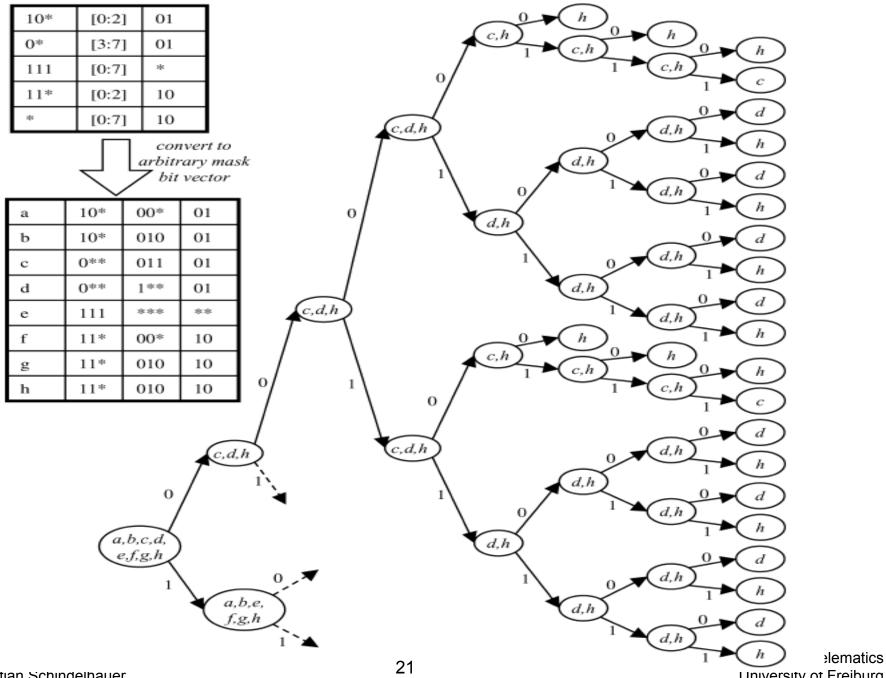
Packet Classification Problem: Algorithm design (examples)

Network Security – Exhaustive Search

- Packet Classification Problem: Exhaustive Search
 - Perform linear search through a list of filter
 - has O(N) storage requirements
 - has O(N) memory accesses per packet
 - where N is the number of filter rules
 - In general a slow solution even for modest-size filter sets
 - But a popular solution in combination with other techniques for the final stage of a lookup, when the set of possible matching filters is reduced to a bounded constant
- Using Decision Trees discussed in next lecture
- This practical course will apply different rule sets for packet classification in Linux Netfilter for firewalling, next practical we will use them for QoS/traffic shaping

- Packet Classification Problem: Decision Trees
 - Idea:
 - Leaves contain filter (or subsets of filters)
 - Construct a search key from the packet fields
 - Traverse the tree by using individual bits or subset of bits from the search key to make branching decisions at each inner node of the tree
 - If we reach a leaf node the best matching filter (or subset of filters) was found
 - Since different search types are possible (e.g. prefix, range match) construction of the tree is difficult

- Packet Classification Problem: Decision Trees
 - Constructing a decision tree
 - Convert all match condition into bit vectors of the following with values 1, 0, * (don't care)
 - Example:
 - Filter table with 3-bit address prefix, arbitrary range of port numbers (3-bit) and an exact 2-bit value:


10*	[0:2]	01
0*	[3:7]	01
111	[0:7]	*
11*	[0:2]	10
÷	[0:7]	10

- Packet Classification Problem: Decision Trees
 - Constructing a decision tree
 - Convert the five filters to bit vectors with arbitrary bit masks

10*	[0:2]	01
0*	[3:7]	01
111	[0:7]	*
11*	[0:2]	10
*	[0:7]	10

а	10*	00*	01
b	10*	010	01
с	0**	011	01
d	0**	1**	01
e	111	非非非	**
f	11*	00*	10
g	11*	010	10
h	11*	010	10

- Construct the tree by expand the tree path until the node covers only one filter or the bit vector is exhausted

University of Freiburg

- Packet Classification Problem: Decision Trees
 - Complexity of Decision Trees
 - Lookup time O(W)
 - Memory requirement of the naive approach $O(2^{W+1})$
 - where W is the number of bits used to specify the filter
 - Several improved and optimized decision tree construction algorithms were developed
 - Example: Hierarchical Intelligent Cuttings (Gupta/McKeown 1999)
 - Geometric approach: each filter defines a d-dimensional rectangle in d-space, where d is the number of fields in the filter
 - Specialized heuristics on the filter set are used to minimize treedepth and memory resource requirements

Network Security – Classification Problem: hi cuts

- Decision Trees Example: Hierarchical Intelligent Cuttings (Gupta/McKeown 1999)
 - Filter set and geometric representation:

Filter	Address	Port
a	1010	2:2
b	1100	5:5
c	0101	8:8
d	*	6:6
е	111*	0:15
f	001*	9:15
g	00*	0:4
h	0*	0:3
i	0110	0:15
j	1*	7:15
k	0*	11:11

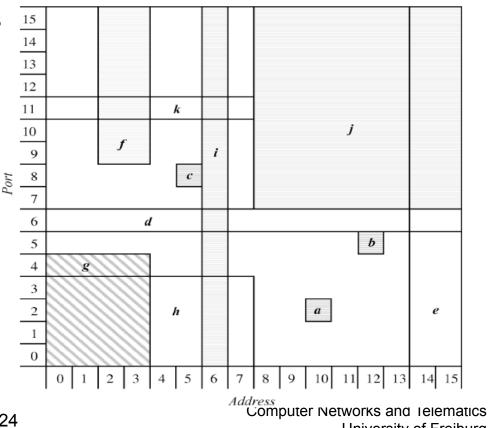


* Cut every dimension into 4 partitions until leave-node contains at most 2 filter.

Here:

* Start with address dimension.

Communication Systems Prof. Christian Schindelhauer



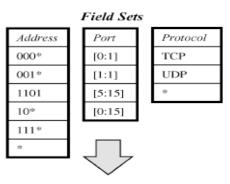
University of Freiburg

Network Security – Decision Trees, hi cuts

- Decision Trees as hi cuts
 - Example: Hierarchical Intelligent Cuttings (Gupta/ ٠ McKeown 1999)
 - Geometric represent

Filter	Address	Port
a	1010	2:2
b	1100	5:5
c	0101	8:8
d	*	6:6
e	111*	0:15
f	001*	9:15
g	00*	0:4
h	0*	0:3
i	0110	0:15
j	1*	7:15
k	0*	11:11

Communication Systems Prof. Christian Schindelhauer


Network Security – Decomposition

- Packet Classification Problem: Decomposition
 - Single field searches can be issued independently. Therefore opportunity to leverage parallelism available on modern hardware
 - Idea:
 - Decompose multiple field search in instances of single field searches and perform independent searches. Finally combine results.
 - Challenge:
 - Efficiently combine results from single field searches

- Packet Classification Problem: Decomposition
 - Example: Crossproducting (Srinivasan et. al. 1999)
 - Observation: the number of unique field specifications is significantly less than the number of filters in a filter set
 - Crossproduction starts by constructing d sets of unique match conditions:
 - e.g. all destination address prefixes from all filters.
 - Each such set returns a single best match entry for a given packet field
 - In order to resolve the best matching filter from the set of best matching entries, a table of crossproducts is necessary:
 - For every possible combination of results the best matching filter is precomputed

Network Security – Decomposition

Filter Set					
Filter	Address	Port	Protocol		
а	000*	[0:1]	TCP		
Ь	001*	[0:1]	TCP		
с	1101	[1:1]	UDP		
d	10*	[5:15]	UDP		
е	001*	[5:15]	UDP		
f	111*	[0:15]	UDP		
g	000*	[5:15]	UDP		
h	10*	[0:1]	TCP		
i	001*	[1:1]	TCP		
j	*	[0:15]	UDP		
k	*	[0:15]	*		

Table of Crossproducts

	-	-	
Address	Port	Protocol	Best Match
000*	[0:1]	TCP	а
000≉	[0:1]	UDP	j
000≉	[0:1]	*	k
000*	[1:1]	TCP	а
000*	[1:1]	UDP	j
000*	[1:1]	*	k
111*	[5:15]	TCP	k
111*	[5:15]	UDP	f
111*	[5:15]	жı	k
*	[0:15]	*	k

- Packet Classification Problem: Decomposition
 - Example: Crossproducting (Srinivasan et. al. 1999)

Network Security – Decomposition

- Packet Classification Problem: Decomposition
 - Example: Crossproducting (Srinivasan et. al. 1999)
 - Performance:
 - A parallel implementation can provide high throughput
 - But at the cost of exponential memory requirements:
 - For N filters and d fields, the crossproduct table can grow up to O(N^d)

Network Security – Tuple Space

- Packet Classification Problem: Tuple Space
 - Similar to the Decomposition approach the observation that the number of unique field specifications is significantly less than the number of filters in a filter set
 - A Tuple defined as the number of specified bits in each filter.
 - Example:
 - For address prefix fields, the number of specified bits is the number of non-wildcard bits of the address
 - For protocols, the value is 1 if e protocol is specified,
 0 if not.
 - etc.

Network Security – Tuple Space

• Packet Classification Problem: Tuple Space

Filter	SA	DA	SP	DP	Prot	Tuple
a	0*	001*	2:2	0:15	TCP	[1, 3, 2, 0, 1]
Ь	01*	0*	0:15	0:4	UDP	[2, 1, 0, 1, 1]
c	0110	0011	0:4	5:15	TCP	[4, 4, 1, 1, 1]
d	1100	3fc	5:15	2:2	UDP	[4, 0, 1, 2, 1]
е	1*	110*	2:2	0:15	UDP	[1, 3, 2, 0, 1]
f	10*	1*	0:15	0:4	TCP	[2, 1, 0, 1, 1]
g	1001	1100	0:4	5:15	UDP	[4, 4, 1, 1, 1]
\bar{h}	0011	*	5:15	2:2	TCP	[4, 0, 1, 2, 1]
i	0*	110*	2:2	0:15	UDP	[1, 3, 2, 0, 1]
j	10*	0*	2:2	2:2	TCP	[2, 1, 2, 2, 1]
k	0110	1100	0:15	0:15	ICMP	[4, 4, 0, 0, 1]
l	1110	*	2:2	0:15	*	[4, 0, 2, 0, 0]

• Example:

The computed Tuples can now be used for a fast, hash-like, exact match. From the Tuple [1, 3, 2, 0, 1] a search key is build by concatenating the first bit of the packet's source address, the first 3 bits of the packet's destination address, etc.

Network Security – Tuple Space

- Packet Classification Problem: Tuple Space
 - Probes to separate tuples can be performed in parallel
 - But in general the tuple space is not predictable, therefore performance can vary widely
 - Tuple Space implementation can be very memory efficient, due to efficient encoding and storage of filter rules. In general memory requirement is O(N)

Network Security – Filtering, Conclusion

- Packet Classification Problem: Conclusion
 - No optimal solution for the general case yet
 - Still an active and vivid research topic.
 - Due to steady hardware improvements and cheap multi-core systems algorithms with parallelized lookups seems very promising
- Other concepts no direct client connection to the outside service
- Layer-7 proxy server application level proxy
 - Client and server in one box
 - For every supported application protocol
 - SMTP, POP3, HTTP, SSH, FTP, NNTP, Q3A, ...
 - Packets are received and processed by server
 - New packets generated by client

Network Security – Protocol Proxies

- Prevents the need for direct network connection of clients advantage
 - no client packet is directly routed into the Internet
 - no packet from Internet is directly handed to the client
- Disadvantage
 - Re-implement every protocol tp be proxied
 - Difficult for proprietary/closed and encrypted protocols
- More general approach: Use a special proxy protocol supported by many applications which offers authentication: socks5

Network Security – Proxies

- Complete server & client implementation in one box for every protocol which can be expected through it
 - Client connects to Firewall
 - Firewall validates request
 - Firewall connects to server
- Response comes back through Firewall and is also processed through client/server
- Large amount of processing per connection
- High level of security but lots of juridical implications doing stuff with the traffic of other people
- E.g.: lot of funny modifications could be tried with filtering (SPAM, Ads, porno sites, ...) - would you like it if your Computer Center, Provider, Minister of the Interior is deciding for you?

Network Security – Firewall Taxonomy

- Packet filters, classification, circuit-level proxies and stateful packet filters are like telephone call-barring by number
 - block or allow mobile calls
 - block or allow international calls
 - block or allow 0190/0900 calls
 - from different internal extensions
- Application level proxy is like telephone call monitoring by listening to the conversations
 - conversations may still be encoded, or in a foreign language !!

Firewalls - Conclusion

- Firewalls control network traffic to and from the protected network
- Can allow / block access to services (both internal and external)
- Can enforce authentication before allowing access to services
- Can monitor traffic in/out of network
- Can classify and re-route traffic based on these classifications
- Firewalls typically defend a protected network against an attacker, who tries to access vulnerable services which should not be available from outside the network

Firewalls - Conclusion

- Firewalls are also used to restrict internal access to external services, for many different reasons:
 - security (don't want people downloading and installing unknown applications)
 - productivity (don't want people wasting time on nonwork related websites etc)
 - cost (many Internet connections, e.g.: Dial-Up are charged by data transferred – ensure this is all necessary)
- But firewalls could mislead to total control and monitoring
 - or distract admins from more important security issues ...

Literature

- Lots of online resources, like www.netfilter.org
- Overview article
 - Taylor, D. E.
 - Survey and taxonomy of packet classification techniques.
 - ACM Computing Surv. 37, 3 (Sep. 2005), 238-275.
 - Singh, Baboescu, Varghese, Wang
 - Packet Classification Using Multidimensional Cutting
 - SIGCOMM 2003, Karlsruhe, Germany

Communication Systems

University of Freiburg Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

