

Algorithms and Methods for Distributed Storage Networks 2. Hard Disks

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Wintersemester 2007/08

Hard Disks

▶ History

- Capacity and Access Speed
- Prices
- Form factors

Construction and Operation

- Mechanics
- Storage technology

Low-Level Data Structures

- Encoding, Decoding
- Tracks , Cylinders
- LBA

Interfaces

- ATA, SATA
- SCSI, SAS
- Fibre-Channel
- eSATA

Lifetime and Disk Failures

- Error Management and Recovery
- Types
- S.M.A.R.T.
- Counter methods

Special Issues

- Sound avoidance
- Data security

Hard Disks

History

Evolution of Hard Disk Capacity

History

- ▶ 1956 IBM invents 305 RAMAC (Random Access Method of Accounting and Control)
 - 5 MBytes, 24 in
- ▶ 1961 IBM invents air bearing heads
- ▶ 1970 IBM invents 8 in floppy disk drives
- ▶ 1973 IBM ships 3340 Winchester sealed hard drives
 - 30 MBytes
- 1980 Seagate introduces 5.25 in hard disk drive
 - 5 MBytes

- ▶ 1981 Sony ships first 3.25 in floppy drive
- ▶ 1983 Rodime produces 3.25 in disk drive
- 1986 Conner introduces first 3.25 in voice coil actuators
- ▶ 1997 Seagate introduces 7,200 RPM Ultra hard disk
- 1996 Fujitsu introduse aero dynamic design for lower flighing heads
- 1999 IBM develops the smallest hard disk of the World 1in (340 MB)
- 2007 Hitachi introduces 1 TB hard disk

History of Hard Disk Prices

Technological impact of magnetic hard disk drives on storage systems, Grochowski, R. D. Halem IBM SYSTEMS JOURNAL, VOL 42, NO 2, 2003

Figure 6 Cost of storage at the disk drive and system level

Figure 7 Cost of storage for disk drive, paper, film, and semiconductor memory

Hard Disks

Construction and Operation

Construction of a Hard Disk

(c) Western Digital Corporation

Construction of a Hard Disk

(c) Seagate Technology

Physical Components

Platters

- round flat disks with special material to store magnetic patterns
- stacked onto a spindle
- rotate at high speed

Read/Write Devices

- usually two per platter
- Actuator
 - old: stepper motor
 - mechanic adjusts to discrete positions
 - * low track density
 - * still used in floppy disks
 - now: voice coil actuator

- servo system dynamicall positions the heads directly over the data tracks
- Head arms
 - * are moved by the actuator to choose the tracks
- Head sliders
 - are responsible to keep the heads in a small defined distance above the platter
 - heads "fly" over the platter on an air cushion
- Read/write heads mounted on top of arms

Slider

Figure 6. Illustration of suspension and slider. Left: schematic. Right: photograph. (Source: Tom Albrecht, IBM)

Proceedings of the American Control Conference ,Arlington, VA June 25-27, 2001 A Tutorial on Controls for Disk Drives William Messner , Rick Ehrlich

Magnetization Techniques

Longitudinal recording

- magnetic moments in the direction of rotation
- problem: super-paramagnetic effect
- 100-200 Gigabit per square inch

Perpendicular

- magnetic moments are orthogonal to the rotation direction
- increases the data density
- 1 Terabit per square inch

HAMR (Heat Assisted Magnetic Recording)

- upcoming technology
- Laser heats up area to keep the necessary magnetic field as small as possible

Electronic Components

- Magnetized Surface on platter
- Read/Write-Head
- Embedded controller
- Disk buffer (disk cache)
 - store bits going to and from the platter
 - read-ahead/read-behind
 - speed matching
 - write acceleration
 - command queueing
- Interface

Hard Disks

Low Level Data Structure

Tracks and Cylinders

Tracks

• is a circle with data on a platter

Cylinder

 is the set of tracks on all platters that are simultaneously accessed by the heads

Sector

- basic unit of data storage
- angular section of a circle

(c) Quantum Corporation

Addressing

- CHS (cylinder, head, sector)
 - each logical unit is addressed by the cylinder
 - set of corresponding tracks on both sides of the platters
 - head
 - sector (angular section)
 - old system
- LBA (Logical Block Addressing)
 - simpler system all logical blocks are number
 - the translation to CHS is

Adapting Sectors

Zoned bit recording

- adapt the sector size to the bit sensity
- different number of sectors depending from the distance from the center

Sector interleaving

- for cylinder switch
- when the arm moves then the disk continues spinning
- to avoid waiting times the numbering of the sectors has an offset

http://www.storagereview.com/guide2000/ref/hdd/geom/

tracksZBR.htm

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Sector Format

- A sector is the atomic data unit of an hard disk
- No absolute position
 - must be identified from its contents
- Contents
 - ID Information (number and location)
 - Synchronization fields
 - Data
 - ECC: Error correcting codes
 - Gaps
- Specific contents varies from hard disk type

Formatting

Low-level formatting

- creates the physical structures (tracks, sectors, control information)
 - starts from empty platter
 - map out bad sectors

Partitioning

divides the disk into logical pieces (i.e. hard disk volumes)

High-level formatting

logical structures for the operating-system level components

Encoding

Problem

- Only the difference of orientation can be measured
- Because of the para-magnetic effect orientation changes need a minimum distance
- Long sequences of same orientation lead to errors

Encoding

must have long, but not too long flux reversals

MFM

- ▶ R: Flux reversal
- N: no flux reversal
- FM (Frequency Modulation)
 - 0 -> RN
 - 1 -> RR
- MFM (Modified Frequency Modulation)
 - 0 (preceded by 0) -> RN
 - 0 (preceded by 1) -> NN
 - 1 -> NR

Run Length Limited (RLL)

Bit Pattern	Encoding Pattern	Flux Reversals Per Bit	Bit Pattern Commonality In Random Bit Stream
11	RNNN	1/2	25%
10	NRNN	1/2	25%
011	NNRNNN	1/3	12.5%
010	RNNRNN	2/3	12.5%
000	NNNRNN	1/3	12.5%
0010	NNRNNRNN	2/4	6.25%
0011	NNNNRNNN	1/4	6.25%
Weighted Average		0.4635	100%

http://www.storagereview.com/guide2000/ref/hdd/geom/dataRLL.html

Partial Response, Maximum Likelihood (PRML)

- Peak detection by analog to digital conversion
 - use multiple data samples to determine the peak
 - increase areal density by 30-40% to standard peak detection
- Extended PRML
 - further improvement of PRML

http://www.storagereview.com/guide2000/ref/hdd/geom/dataPRML.html

Hard Disks

Interfaces

ATA (AT Attachment)

- Parallel connection standard, a.k.a.P-ATA
- > evolves since 1994
 - ATA-1: 1994-99, up to 8.3 MB/s
 - ATA-2: 1996-01
 - PCMCIA connector
 - ATA-3: 1997-02
 - introduces S.M.A.R.T.
 - ATA-4: 1998-,
 - supports CD-ROM, tape, etc.
 - features for solid state drives,
 - hidden protected area
 - * hidden against OS
 - ATA-5: 2000-, up to 66 MB/s

- ATA-6: 2002-, up to 100 MB/s, automatic acoustic management
- ATA-7: 2005-, SATA 1.0, up to 150 MB/s
- ATA-8, in progress

SATA – Serial Advanced Technology Attachmnet

- Serial ATA
- Computer bus designed for transfer of data between motherboard and mass storage device
 - faster transfers than P-ATA, designed as successor
 - allows removing and adding devices while operating (hot swapping)
- **Evolution:**
 - SATA 1.5 Gbit/s
 - SATA 3.0 Gbit/s
 - SATA 6.0 Gbit/s

SCSI

Small Computer System Interface

- offers higher data rates than SATA
- hides the complexity of physical format
- peripheral interface: 8/16 devices can be attached to a single bus
- buffered interface

Evolution of Parallel SCSI

• SCSI: 1986, 5 MB/s

• Fast SCSI: 1994, 10 MB/s

• ...

• Ultra SCSI: 1999, 160 MB/s

• Ultra-320 SCSI: 2002, 320 MB/s

Ultra-640 SCSI: 2003, 640 MB/s

▶ Evolution of Serial SCSI

• SSA: 1990 40 MB/s

SAS: Serial Attached SCSI, 300 MB/s

SCSI-Fibre Channel interface

- FC-AL 1Gb: 1993 Fibre Channel 100 MB/s
- FC-AL 2Gb: Fibre Channel 200 MB/s
- FC-AL 4Gb: Fibre Channel 400 MB/s
- length 500m / 3km

Other Interfaces

- ▶ eSATA (since 2004)
 - variant of SATA for consumer market
 - maximum cable length of 2m
- USB (Universal Serial Bus)
 - allows hot swapping
 - 12 or 480 MBit/s
- Firewire (IEEE 1394 interface)
 - serial bus interface standard
 - Firewire 400: ~100/200/400 MBit/s half-duplex
 - Firewire 800: 786 MBit/s full-duplex

Hard Disks

Lifetime and Disk Failures

Disk Failure Rates

▶ Failure Trends in a Large Disk Drive Population, Pinheiro, Weber, Barroso, Google Inc. FAST 2007

Figure 2: Annualized failure rates broken down by age groups

Reasons for Failures

- From: www.datarecorvery.org
- Physical reasons
 - scratched platter
 - broken arm/slider
 - hard drive motor failed
 - humidity, smoke in the drive
 - manufacturer defect
 - firmware corruption
 - bad sectors
 - overheated hard drive
 - head crash
 - power surge
 - water or fire damage

- Logical Reasons
 - failed boot sector
 - master boot record failure
 - drive not recognized by BIOS
 - operating system malfunction
 - accidentally deleted data
 - software crash
 - corrupt file system
 - employee sabotage
 - improper shutdown
 - disk repair utilities
 - computer viruses
 - ...

Reasons for Failure

Failure Trends in a Large Disk Drive Population, Pinheiro,
 Weber, Barroso, Google Inc. FAST 2007

Figure 4: Distribution of average temperatures and failures rates.

S.M.A.R.T.

- Self-Monitoring, Analysis and Reporting Technology
- Relevant Parameters
 - Seek error rate
 - track was not hit
 - Raw read error rate
 - problems in the magnetic medium
 - hardware ECC recovered
 - recovered bits by error correction (not really alarming)
 - Scan error rate
 - at periodic check non repairable error occurs (problems in the magnetic medium)

- Throughout performance
 - spinning rate problem
- Spin up time
 - startup time
- Reallocated sector count
 - number of used reserve sectors
- Drive temperature
- Informative parameters
 - Start/stop count
 - Power on hours count
 - Load/unload cycle count
 - Ultra DMA CRC Error Count

Hard Disks

Special Issues

Landing Zones

Problem

- When a hard disk is switched off the head can damage the platter
- Power loss
- Sudden movements
 - can lead to permanent damage

Solution

- Extra landing zones
 - in the middle of the disk
 - outside of the disk at extra park situation

Sound Control

- In desktop computers the working sound can irritate and disturb
- Solution
 - Extra mode with
 - slower actuator arm movement
 - slower rotation time
- Problem
 - Performance slows down

Data Safety

Problem

- Resold or disposed hard disk still carry sensible data
- Deleting data does not overwrite data
- Overwriting does not completely erase the information

Solution

- Extra hardware (strong magnets, physical destruction)
- Cryptographic algorithms for storing
- Sophisticated overwriting algorithms

Algorithms and Methods for Distributed Storage Networks 2. Hard Disks

Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Wintersemester 2007/08

