
Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08

Algorithms and Methods for
Distributed Storage Networks
11 Peer-to-Peer Storage (final version)

Christian Schindelhauer

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Outline

‣ Principles and history

‣ Algorithms and Methods

• DHTs

• Chord

• Pastry and Tapestry

‣ P2P Storage Systems

• PAST

• Oceanstore

‣ Further Issues

• Bandwidth

• Anonymity, Security

• Availability and Robustness

2

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Global Internet Traffic Shares
1993-2004

Source: CacheLogic 2005

3

E-Mail

FTP

Peer-to-Peer

Web

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

CacheLogic Research Trends of Internet Protocols 1993-2004

S
h
a
re

 o
f
In

te
rn

e
t
tr

a
ffi

c

0

10

20

30

40

50

60

70

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Global Internet Traffic 2007

‣ Ellacoya report (June 2007)
• worldwide HTTP traffic

volume overtakes P2P after
four years continues record

‣ Main reason: Youtube.com

4

rest
2%

VoIP
1%

Newsgroups
9%

non-HTTP video streaming
3%

gaming
2%

P2P
37%

HTTP
46%

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Milestones P2P Systems

‣ Napster (1st version:
1999-2000)

‣ Gnutella (2000), Gnutella-2
(2002)

‣ Edonkey (2000)
• later: Overnet usese

Kademlia

‣ FreeNet (2000)
• Anonymized download

‣ JXTA (2001)

• Open source P2P network
platform

‣ FastTrack (2001)
• known from KaZaa,

Morpheus, Grokster

‣ Bittorrent (2001)
• only download, no search

‣ Skype (2003)

• VoIP (voice over IP), Chat,
Video

5

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Milestones Theory

‣ Distributed Hash-Tables (DHT) (1997)
• introduced for load balancing

between web-servers

‣ CAN (2001)
• efficient distributed DHT data

structure for P2P networks

‣ Chord (2001)

• efficient distributed P2P network with
logarithmic search time

‣ Pastry/Tapestry (2001)

• efficient distributed P2P network
using Plaxton routing

‣ Kademlia (2002)
• P2P-Lookup based on XOr-Metrik

‣ Many more exciting approaches

• Viceroy, Distance-Halving, Koorde,
Skip-Net, P-Grid, ...

‣ Recent developments
• Network Coding for P2P

• Game theory in P2P

• Anonymity, Security

6

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

What is a P2P Network?

‣ What is P2P NOT?

• a peer-to-peer network is not a client-server network

‣ Etymology: peer

• from latin par = equal

• one that is of equal standing with another

• P2P, Peer-to-Peer: a relationship between equal partners

‣ Definition

• a Peer-to-Peer Network is a communication network between
computers in the Internet

- without central control

- and without reliable partners

‣ Observation

• the Internet can be seen as a large P2P network

7

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Napster

‣ Shawn (Napster) Fanning
• published 1999 his beta version of the now legendary

Napster P2P network
• File-sharing-System

• Used as mp3 distribution system
• In autumn 1999 Napster has been called download of the

year
‣ Copyright infringement lawsuit of the music industry in

June 2000
‣ End of 2000: cooperation deal

• between Fanning and Bertelsmann Ecommerce

‣ Since then Napster is a commercial file-sharing platform

8

Client

Server

Query

Reply

Client

Client

Client

Client

Client

Client

Client

direct

download

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

How Did Napster Work?

‣ Client-Server
‣ Server stores

• Index with meta-data

- file name, date, etc

• table of connections of participating
clients

• table of all files of participants

‣ Query
• client queries file name

• server looks up corresponding clients

• server replies the owner of the file

• querying client downloads the file
from the file owning client

9

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

History of Gnutella

‣ Gnutella

• was released in March 2000 by Justin Frankel and Tom
Pepper from Nullsoft

• Since 1999 Nullsoft is owned by AOL

‣ File-Sharing system

• Same goal as Napster

• But without any central structures

10

Ping

Ping

Ping

Ping

Ping

Ping

Ping

Pong

Pong

Pong

Pong

Pong

Pong

Pong

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Gnutella —
Connecting

‣ Neighbor lists
• Gnutella connects directly with other

clients

• the client software includes a list of
usually online clients

• the clients checks these clients until
an active node has been found

• an active client publishes its neighbor
list

• the query (ping) is forwarded to other
nodes

• the answer (pong) is sent back

• neighbor lists are extended and stored

• the number of the forwarding is

11

Ping

Ping

Ping

Ping

Ping

Ping

Ping

Pong

Pong

Pong

Pong

Pong

Pong

Pong

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Gnutella —
Connecting

‣ Protokoll
• Ping

- participants query for neighbors

- are forwarded according for TTL
steps (time to live)

• Pong

- answers Ping

- is forwarded backward on the
query path

- reports IP and port adress (socket
pair)

- number and size of available files

12

Query

Query

Query

Query

Query

Query

querying

peer

QueryHit

QueryHit

QueryHit

QueryHit

querying

peer

direct

download

querying

peer

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Gnutella —
Query

‣ File Query
• are sent to all neighbors

• Neighbors forward to all neighbors

• until the maximum hop distance has
been reached

- TTL-entry (time to live)

‣ Protocol

• Query

- for file for at most TTL hops

• Query-hits

- answers on the path backwards

‣ If file has been found, then initiate
direct download

13

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Gnutella — Graph Structure

‣ Graph structure
• constructed by random process

• underlies power law

• without control

Gnutella snapshot in 2000

14
out-degree

o
c
c
u
re
n
c
e
s

10
0

10
1

10
2

10
3

10
!1

10
0

10
1

10
2

10
3

Gnutella 12/28/2000
exp(6.04022)*x**(!1.42696)

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Random graph

(a) Gnutella 12/28/00(|r| = 0.94) (b) Random Graph

Figure 2.2: Log-log plots of degree versus rank (power-law 1)

node degree power-law exponent of −1.4 for the Gnutella topology. We must remark

that a group called Clip2 independently discovered this particular power-law for the

Gnutella network topology [13]. However they reported the power-law exponent of

−2.3, in disagreement with our result. We believe the reason for this discrepancy is

due to the fact that our results are based on the network crawls performed during

December of 2000, while the other result dates back to the summer of the same year.

Since that time, the Gnutella network has undergone significant changes in terms

of its structure and size, as described in [13]. While the values of the node degree

exponent O for all of the Gnutella topology instances obtained during the month of

December are consistently around −1.4, we have observed O values of −1.6 for the

data obtained in November. This may be taken as indication of a highly-dynamic,

evolving state of the Gnutella network. We are nevertheless currently attempting to

establish contact with people from Clip2 in order to further examine reasons for this

discrepancy. Interestingly, power-law degree distributions have recently been reported

for another file-sharing P2P applications, Freenet [22].

22

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Why Gnutella Does Not Really
Scale

‣ Gnutella
• graph structure is random

• degree of nodes is small

• small diameter

• strong connectivity

‣ Lookup is expensive

• for finding an item the whole network
must be searched

‣ Gnutella‘s lookup does not scale

• reason: no structure within the index
storage

15

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Chord

‣ Ion Stoica, Robert Morris, David
Karger, M. Frans Kaashoek and Hari
Balakrishnan (2001)

‣ Distributed Hash Table

• range {0,..,2m-1}

• for sufficient large m

‣ Network

• ring-wise connections

• shortcuts with exponential increasing
distance

16

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Chord as DHT

‣ n number of peers
‣ V set of peers

‣ k number of data stored
‣ K set of stored data

‣ m: hash value length
• m ≥ 2 log max{K,N}

‣ Two hash functions mapping to
{0,..,2m-1}
• rV(b): maps peer to {0,..,2m-1}

• rK(i): maps index according to key i to
{0,..,2m-1}

‣ Index i maps to peer b = fV(i)
• fV(i) := arg minb∈V{(rV(b)-rK(i)) mod 2m}

17

p1

p

3

p
2

x
1

0110
1010
1110

0110
1010
1110

0110
1010
1110

x
3

x
2

1

0

4

6

8

12

10

14
2

3

5

9 7

11

13

15

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Pointer Structure of Chord

‣ For each peer
• successor link on the ring

• predecessor link on the ring

• for all i ∈ {0,..,m-1}

- Finger[i] := the peer following the
value rV(b+2i)

‣ For small i the finger entries are the
same

• store only different entries

‣ Lemma
• The number of different finger entries

is O(log n) with high probability, i.e. 1-
n-c.

18

p
1

p
3

4

0

8

12

16

24

20

28

p
5

p
6

p
2

p
4

p
7

p
8

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Data Structure of Chord

‣ For each peer
• successor link on the ring

• predecessor link on the ring

• for all i ∈ {0,..,m-1}

- Finger[i] := the peer following the
value rV(b+2i)

‣ For small i the finger entries are the
same

• store only different entries

‣ Chord
• needs O(log n) hops for lookup

• needs O(log2 n) messages for
inserting and erasing of peers

19

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Lookup in Chord

‣ Theorem
• The Lookup in Chord needs O(log n)

steps w.h.p.

20

p
1

p
3

4

0

8

12

16

24

20

28

p
5

p
6

p
2

p
4

p
7

p
8

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

How Many Fingers?

‣ Lemma
• The out-degree in Chord is O(log n) w.h.p.

• The in-degree in Chord is O(log2n) w.h.p.

‣ Theorem

• For integrating a new peer into Chord
only O(log2 n) messages are necessary.

21

0

2m-1

p
kp

j

Finger[m-1]

Finger[m-2]

Finger[m-log n]

0

2m-1

pkpj

Finger[m-1]

Finger[m-2]

Finger[m-log n]

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Adding a Peer

‣ First find the target area in O(log n)
steps

‣ The outgoing pointers are adopted from
the predecessor and successor
• the pointers of at most O(log n)

neighbored peers must be adapted

‣ The in-degree of the new peer is
O(log2n) w.h.p.

• Lookup time for each of them

• There are O(log n) groups of neighb
ored peers

• Hence, only O(log n) lookup steps with
at most costs O(log n) must be used

• Each update of has constant cost

22

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Pastry
Peer-to-Peer Networks

23

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Pastry

‣ Peter Druschel

• Rice University, Houston, Texas

• now head of Max-Planck-Institute for Computer Science, Saarbrücken/
Kaiserslautern

‣ Antony Rowstron

• Microsoft Research, Cambridge, GB

‣ Developed in Cambridge (Microsoft Research)

‣ Pastry

• Scalable, decentralized object location and routing for large scale peer-to-
peer-network

‣ PAST

• A large-scale, persistent peer-to-peer storage utility

‣ Two names one P2P network

• PAST is an application for Pastry enabling the full P2P data storage
functionality

• First, we concentrate on Pastry

24

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Pastry Overview

‣ Each peer has a 128-bit ID: nodeID
• unique and uniformly distributed

• e.g. use cryptographic function
applied to IP-address

‣ Routing
• Keys are matched to {0,1}128

• According to a metric messages are
distributed to the neighbor next to
the target

‣ Routing table has
O(2b(log n)/b) + l entries

• n: number of peers

• l: configuration parameter

• b: word length

- typical: b= 4 (base 16),
l = 16

- message delivery is guaranteed as
long as less than l/2 neighbored
peers fail

‣ Inserting a peer and finding a key
needs O((log n)/b) messages

25

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Routing Table

‣ NodeId presented in base 2b

• e.g. NodeID: 65A0BA13
‣ For each prefix p and letter x ∈ {0,..,2b-1} add an peer

of form px* to the routing table of NodeID, e.g.
• b=4, 2b=16
• 15 entries for 0*,1*, .. F*
• 15 entries for 60*, 61*,... 6F*
• ...
• if no peer of the form exists, then the entry remains

empty
‣ Choose next neighbor according to a distance metric

• metric results from the RTT (round trip time)

‣ In addition choose l neighors

• l/2 with next higher ID

• l/2 with next lower ID

26

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Routing Table

‣ Example b=2
‣ Routing Table

• For each prefix p and letter x ∈ {0,..,2b-1}
add an peer of form px* to the routing
table of NodeID

‣ In addition choose l neighors

• l/2 with next higher ID

• l/2 with next lower ID

‣ Observation
• The leaf-set alone can be used to find a

target

‣ Theorem
• With high probability there are at most

O(2b (log n)/b) entries in each routing
table

27

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Routing Table

‣ Theorem
• With high probability there are at

most O(2b (log n)/b) entries in each
routing table

‣ Proof
• The probability that a peer gets the

same m-digit prefix is

• The probability that a m-digit prefix is
unused is

• For m=c (log n)/b we get

• With (extremely) high probability
there is no peer with the same prefix
of length (1+ε)(log n)/b

• Hence we have (1+ε)(log n)/b rows
with 2b-1 entries each

28

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

A Peer Enters

‣ New node x sends message to the node z with the
longest common prefix p

‣ x receives

• routing table of z

• leaf set of z

‣ z updates leaf-set

‣ x informs l-leaf set

‣ x informs peers in routing table

• with same prefix p (if l/2 < 2b)

‣ Numbor of messages for adding a peer

• l messages to the leaf-set

• expected (2b - l/2) messages to nodes with

common prefix

• one message to z with answer

29

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

When the Entry-Operation Errs

‣ Inheriting the next neighbor routing table does
not allows work perfectly

‣ Example

• If no peer with 1* exists then all other peers
have to point to the new node

• Inserting 11

• 03 knows from its routing table

- 22,33

- 00,01,02

• 02 knows from the leaf-set

- 01,02,20,21

‣ 11 cannot add all necessary links to the
routing tables

30

new peer

entries in leaf set

necessary entries in leaf set
missing entries

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Missing Entries in the Routing
Table

‣ Assume the entry Rij is missing at peer
D
• j-th row and i-th column of the routing

table

‣ This is noticed if a message of a peer
with such a prefix is received

‣ This may also happen if a peer leaves
the network

‣ Contact peers in the same row
• if they know a peer this address is

copied

‣ If this fails then perform routing to the
missing link

31

missing link
request to known neighbors

links of neighbors

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Lookup

‣ Compute the target ID using the hash function

‣ If the address is within the l-leaf set

• the message is sent directly

• or it discovers that the target is missing

‣ Else use the address in the routing table to
forward the mesage

‣ If this fails take best fit from all addresses

32

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Lookup in Detail

‣ L: 	 l-leafset

‣ R:	 routing table

‣ M: nodes in the vicinity of D
 (according to RTT)

‣ D: 	 key

‣ A:	 nodeID of current peer

‣ Ril: 	 j-th row and i-th column of
	 the routing table

‣ Li: 	 numbering of the leaf set

‣ Di: 	 i-th digit of key D
‣ shl(A): length of the largest common
 prefix of A and D
 (shared header length)

33

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Routing — Discussion

‣ If the Routing-Table is correct

• routing needs O((log n)/b) messages

‣ As long as the leaf-set is correct

• routing needs O(n/l) messages

• unrealistic worst case since even damaged routing tables

allow dramatic speedup

‣ Routing does not use the real distances

• M is used only if errors in the routing table occur

• using locality improvements are possible

‣ Thus, Pastry uses heuristics for improving the lookup time

• these are applied to the last, most expensive, hops

34

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Localization of the k Nearest
Peers

‣ Leaf-set peers are not near, e.g.

• New Zealand, California, India, ...

‣ TCP protocol measures latency

• latencies (RTT) can define a metric

• this forms the foundation for finding the nearest peers

‣ All methods of Pastry are based on heuristics

• i.e. no rigorous (mathematical) proof of efficiency

‣ Assumption: metric is Euclidean

35

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Locality in the Routing Table

‣ Assumption

• When a peer is inserted the peers contacts a
near peer

• All peers have optimized routing tables

‣ But:

• The first contact is not necessary near according
to the node-ID

‣ 1st step

• Copy entries of the first row of the routing table
of P

- good approximation because of the triangle
inequality (metric)

‣ 2nd step

• Contact fitting peer p‘ of p with the same first
letter

• Again the entries are relatively close

‣ Repeat these steps until all entries are updated

36

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Locality in the Routing Table

‣ In the best case
• each entry in the routing table is

optimal w.r.t. distance metric

• this does not lead to the shortest path

‣ There is hope for short lookup times
• with the length of the common prefix

the latency metric grows exponentially

• the last hops are the most expensive
ones

• here the leaf-set entries help

37

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Localization of Near Nodes

‣ Node-ID metric and latency metric are not compatible

‣ If data is replicated on k peers then peers with similar
Node-ID might be missed

‣ Here, a heuristic is used

‣ Experiments validate this approach

38

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Experimental Results —
Scalability

‣ Parameter b=4, l=16, M=32
‣ In this experiment the hop distance

grows logarithmically with the number
of nodes

‣ The analysis predicts O(log n)
‣ Fits well

39

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Experimental Results
Distribution of Hops

40

‣ Parameter b=4, l=16, M=32,
n = 100,000

‣ Result

• deviation from the expected hop
distance is extremely small

‣ Analysis predicts difference with
extremely small probability
• fits well

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Experimental Results —
Latency

‣ Parameter b=4, l=16, M=3
‣ Compared to the shortest path

astonishingly small

• seems to be constant

41

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Tapestry
Zhao, Kubiatowicz und Joseph (2001)

42

Distributed Storage

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Tapestry

‣ Objects and Peers are identified by

• Objekt-IDs (Globally Unique Identifiers GUIDs) and

• Peer-IDs

‣ IDs

• are computed by hash functions

- like CAN or Chord

• are strings on basis B

- B=16 (hexadecimal system)

43

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Neighborhood of a Peer (1)

‣ Every peer A maintains for each prefix
x of the Peer-ID
• if a link to another peer sharing this

Prefix x

• i.e. peer with ID B=xy has a neighbor
A, if xy´=A for some y, y´

‣ Links sorted according levels
• the level denotes the length of the

common prefix

• Level L = |x|+1

44

‣ For each prefix x and all letters j of
the peer with ID A
• establish a link to a node with prefix xj within the

neighboorhood set
‣ Peer with Node-ID A has b |A| neighborhood sets
‣ The neighborhood set of contains all nodes with

prefix sj
• Nodes of this set are denoted by (x,j)

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Neighborhood Set (2)

45

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Example of Neighborhood Sets

4220 420? 40?? 0???4220 420? 40?? 0???

4221 421? 41?? 1???4221 421? 41?? 1???

4222 422? 42?? 2???4222 422? 42?? 2???

4223 423? 43?? 3???4223 423? 43?? 3???

4224 424? 44?? 4???4224 424? 44?? 4???

4225 425? 45?? 5???4225 425? 45?? 5???

4226 426? 46?? 6???4226 426? 46?? 6???

4227 427? 47?? 7???4227 427? 47?? 7???

Neighborhood set of node 4221

j=0

j=1

j=7

.

.

.

.

.

.

Level 4 Level 3 Level 1Level 2

46

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Links

‣ For each neighborhood set at most k Links are
maintained

‣ Note:

• some neighborhood sets are empty

47

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Properties of Neighborhood Sets

‣ Consistency
• If for any A

- then there are no (x,j) peers in the network

- this is called a hole in the routing table of level |x|+1 with letter j

‣ Network is always connected
• Routing can be done by following the letters of the ID b1b2…bn

1st hop to node A1

2nd hop to node A2

3rd hop to node A3

…

48

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Locality

‣ Metric

• e.g. given by the latency between nodes

‣ Primary node of a neighborhood set

• The closest node (according to the metric) in the
neighborhood set of A is called the primary node

‣ Secondary node

• the second closest node in the neighborhood set

‣ Routing table

• has primary and secondary node of the neighborhood

table

49

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Root Node

‣ Object with ID Y should stored by a so-called Root
Node with this ID

‣ If this ID does not exist then a deterministic choice
computes the next best choice sharing the greatest
commen prefix

50

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Surrogate Routing

‣ Surrogate Routing

• compute a surrogate (replacement root node)

• If (x,j) is a hole, then choose (x,j+1),(x,j+2),…,(x,B),(x,
0), ..., (x,j-1) until a node is found

• Continue search in the next higher if no node has been
found

51

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Example: Surrogate Routing

2716

4233

4899

4860

Level 1, j=4

Level 2, j=6 does not exist, next link j=8

Level 3, j=6

Peer 4860 has no level 4 neighbors => end of search

52

‣ Lookup of 4666 by peer 2716

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Publishing Objects

‣ Peers offering an object (storage
servers)
• send message to the root node

‣ All nodes along the search path store
object pointers to the storage server

53

4379

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Lookup

‣ Choose the root node of Y
‣ Send a message to this node

• using primary nodes

‣ Abort search if an object link has been
found
• then send message to the storage

server

54

4379

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Fault Tolerance

‣ Copies of object IDs

• use different hash functions for multiple root nodes for
objects

• failed searches can be repeated with different root
nodes

‣ Soft State Pointer

• links of objects are erased after a designated time

• storage servers have to republish

- prevents dead links

- new peers receive fresh information

55

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Surrogate Routing

‣ Theorem

• Routing in Tapestry needs O(log n) hops with high
probability

56

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Adding Peers

‣ Perform lookup in the network for the own ID

• every message is acknowledged

• send message to all neighbors with fitting prefix,

- Acknowledged Multicast Algorithm

‣ Copy neighborhood tables of surrogate peer

‣ Contact peers with holes in the routing tables

• so they can add the entry

• for this perform multicast algorithm for finding such peers

57

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

A

B

Root

Leaving of Peers

‣ Peer A notices that peer B has left
‣ Erase B from routing table

• Problem holes in the network can
occur

‣ Solution: Acknowledged Multicast
Algorithm

‣ Republish all object with next hop to
root peer B

58

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Pastry versus Tapestry
‣ Both use the same routing principle

• Plaxton, Rajamaran und Richa

• Generalization of routing on the hyper-cube

‣ Tapestry

• is not completely self-organizing

• takes care of the consistency of routing table

• is analytically understood and has provable performance

‣ Pastry

• Heuristic methods to take care of leaving peers

• More practical (less messages)

• Leaf-sets provide also robustness

59

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Past
Druschel, Rowstron

2001

Distributed Storage

60

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

PAST

‣ PAST: A large-scale, persistent peer-to-peer storage utility

• by Peter Druschel (Rice University, Houston – now Max-
Planck-Institut, Saarbrücken/Kaiserlautern)

• and Antony Rowstron (Microsoft Research)

‣ Literature

• A. Rowstron and P. Druschel, "Storage management and

caching in PAST, a large-scale, persistent peer-to-peer
storage utility", 18th ACM SOSP'01, 2001.

- all pictures from this paper

• P. Druschel and A. Rowstron, "PAST: A large-scale, persistent

peer-to-peer storage utility", HotOS VIII, May 2001.

61

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Goals of PAST

‣ Peer-to-Peer based Internet Storage

• on top of Pastry

‣ Goals

• File based storage

• High availability of data

• Persistent storage

• Scalability

• Efficient usage of resources

62

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Motivation

‣ Multiple, diverse nodes in the Internet can be used

• safety by different locations

‣ No complicated backup

• No additional backup devices

• No mirroring

• No RAID or SAN systems with special hardware

‣ Joint use of storage

• for sharing files

• for publishing documents

‣ Overcome local storage and data safety limitations

63

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Interface of PAST

‣ Create:
fileId = Insert(name, owner-
credentials, k, file)

• stores a file at a user-specified
number k of divers nodes within the
PAST network

• produces a 160 bit ID which
identifies the file (via SHA-1)

‣ Lookup:
file = Lookup(fileId)

• reliably retrieves a copy of the file
identified fileId

‣ Reclaim:
Reclaim(fileId, owner-credentials)

• reclaims the storage occupied by the
k copies of the file identified by fileId

‣ Other operations do not exist:

• No erase

- to avoid complex agreement
protocols

• No write or rename

- to avoid write conflicts

• No group right management

- to avoid user, group
managements

• No list files, file information, etc.

‣ Such operations must be provided by
additional layer

64

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Relevant Parts of Pastry

‣ Leafset:

• Neighbors on the ring

‣ Routing Table

• Nodes for each prefix + 1
other letter

‣ Neighborhood set

• set of nodes which have
small TTL

65

nodeId in the first n digits, but whose n + 1th digit has
one of the 2b − 1 possible values other than the n + 1th
digit in the present node’s id. Each entry in the routing
table points to one of potentially many nodes whose nodeId
have the appropriate prefix; in practice, a node is chosen
that is close to the present node, according to the proximity
metric. If no node is known with a suitable nodeId, then the
routing table entry is left empty. The uniform distribution
of nodeIds ensures an even population of the nodeId space;
thus, only "log2bN# levels are populated in the routing table.

In addition to the routing table, each node maintains IP
addresses for the nodes in its leaf set and its neighborhood
set. The leaf set is the set of nodes with the l/2 numeri-
cally closest larger nodeIds, and the l/2 nodes with numer-
ically closest smaller nodeIds, relative to the present node’s
nodeId. The neighborhood set is a set of l nodes that are
near the present node, according to the proximity metric.
It is not used in routing, but is useful during node addi-
tion/recovery. Figure 1 depicts the state of a PAST node
with the nodeId 10233102 (base 4), in a hypothetical system
that uses 16 bit nodeIds and values of b = 2 and l = 8.

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203

0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302

102-0-0230 102-1-1302 102-2-2302 3

1023-0-322 1023-1-000 1023-2-121 3

10233-0-01 1 10233-2-32

0 102331-2-0

2

Neighborhood set
13021022 10200230 11301233 31301233

02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122

10233001 10233000 10233230 10233232

LARGERSMALLER

Figure 1: State of a hypothetical Pastry node with
nodeId 10233102, b = 2, and l = 8. All numbers
are in base 4. The top row of the routing table
represents level zero. The shaded cell at each level
of the routing table shows the corresponding digit
of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with
10233102 - next digit - rest of nodeId. The associated IP
addresses are not shown.

In each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the fileId a prefix
that is at least one digit (or b bits) longer than the prefix
that the fileId shares with the present node’s id. If no such
node is known, the message is forwarded to a node whose
nodeId shares a prefix with the fileId as long as the current
node, but is numerically closer to the fileId than the present
node’s id. Such a node must be in the leaf set unless the
message has already arrived at the node with numerically
closest nodeId. And, unless $l/2% adjacent nodes in the leaf
set have failed simultaneously, at least one of those nodes
must be live.
Locality Next, we briefly discuss Pastry’s properties with

respect to the network proximity metric. Recall that the
entries in the node routing tables are chosen to refer to a
nearby node, in terms of the proximity metric, with the ap-
propriate nodeId prefix. As a result, in each step a message
is routed to a “nearby” node with a longer prefix match
(by one digit). This local heuristic obviously cannot achieve
globally shortest routes, but simulations have shown that
the average distance traveled by a message, in terms of the
proximity metric, is only 50% higher than the corresponding
“distance” of the source and destination in the underlying
network [27].

Moreover, since Pastry repeatedly takes a locally “short”
routing step towards a node that shares a longer prefix with
the fileId, messages have a tendency to first reach a node,
among the k nodes that store the requested file, that is near
the client, according to the proximity metric. One exper-
iment shows that among 5 replicated copies of a file, Pas-
try is able to find the “nearest” copy in 76% of all lookups
and it finds one of the two “nearest” copies in 92% of all
lookups [27].
Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in
the presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in full
detail in [27].

Briefly, an arriving node with the newly chosen nodeId
X can initialize its state by contacting a “nearby” node A
(according to the proximity metric) and asking A to route
a special message with the destination set to X. This mes-
sage is routed to the existing node Z with nodeId numer-
ically closest to X2. X then obtains the leaf set from Z,
the neighborhood set from A, and the ith row of the routing
table from the ith node encountered along the route from
A to Z. One can show that using this information, X can
correctly initialize its state and notify all nodes that need to
know of its arrival, thereby restoring all of Pastry’s invari-
ants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a period T , it is presumed
failed. All members of the failed node’s leaf set are then no-
tified and they update their leaf sets to restore the invariant.
Since the leaf sets of nodes with adjacent nodeIds overlap,
this update is trivial. A recovering node contacts the nodes
in its last known leaf set, obtains their current leafs sets,
updates its own leaf set and then notifies the members of
its new leaf set of its presence. Routing table entries that
refer to failed nodes are repaired lazily; the details are not
relevant to the subject of this paper [27].

Pastry, as described so far, is deterministic and thus vul-
nerable to malicious or failed nodes along the route that ac-
cept messages but do not correctly forward them. Repeated
queries could thus fail each time, since they are likely to take
the same route. To overcome this problem, the routing is ac-
tually randomized. To avoid routing loops, a message must
always be forwarded to a node that shares at least as long a
prefix with, but is numerically closer to the destination node
in the namespace than the current node. The choice among
multiple such nodes is random. In practice, the probabil-

2In the exceedingly unlikely event that X and Z are equal,
the new node must obtain a new nodeId.

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Interfaces of Pastry

‣ route(M, X):

• route message M to node with nodeId numerically
closest to X

‣ deliver(M):

• deliver message M to application

‣ forwarding(M, X):

• message M is being forwarded towards key X

‣ newLeaf(L):

• report change in leaf set L to application

66

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Insert Request Operation

‣ Compute fileId by hashing
• file name

• public key of client

• some random numbers, called salt

‣ Storage (k x filesize)

• is debited against client‘s quota

‣ File certificate
• is produced and signed with owner‘s

private key

• contains fileID, SHA-1 hash of file‘s
content, replciation factor k, the
random salt, creation date, etc.

‣ File and certificate are routed via
Pastry
• to node responsible for fileID

‣ When it arrives in one node of the k
nodes close to the fileId
• the node checks the validityof the file

• it is duplicated to all other k-1 nodes
numerically close to fileId

‣ When all k nodes have accepted a
copy
• Each nodes sends store receipt is

send to the owner

‣ If something goes wrong an error
message is sent back
• and nothing stored

67

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Lookup

‣ Client sends message with requested fileId into the
Pastry network

‣ The first node storing the file answers

• no further routing

‣ The node sends back the file

‣ Locality property of Pastry helps to send a close-by
copy of a file

68

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Reclaim

‣ Client‘s nodes sends reclaim certificate

• allowing the storing nodes to check that the claim is
authentificated

‣ Each node sends a reclaim receipt

‣ The client sends this recept to the retrieve the storage
from the quota management

69

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Security

‣ Smartcard

• for PAST users which want to store files

• generates and verifies all certificates

• maintain the storage quotas

• ensure the integrity of nodeID and fileID assignment

‣ Users/nodes without smartcard

• can read and serve as storage servers

‣ Randomized routing

• prevents intersection of messages

‣ Malicious nodes only have local influence

70

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Storage Management

‣ Goals

• Utilization of all storage

• Storage balancing

• Providing k file replicas

‣ Methods

• Replica diversion

- exception to storing replicas nodes in the leafset

• File diversion

- if the local nodes are full all replicas are stored at
different locations

71

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Causes of Storage Load
Imbalance

‣ Statistical variation

• birthday paradoxon (on a weaker scale)

‣ High variance of the size distribution

• Typical heavy-tail distribution, e.g. Pareto distribution

‣ Different storage capacity of PAST nodes

72

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Heavy Tail Distribution

‣ Discrete Pareto Distribution for x ∈ {1,2,3,…}

• with constant factor

‣ Heavy tail

• only for small k moments E[Xk] are defined

• Expectation is defined only if α>2

• Variance and E[X2] only exist if α>3

• E[Xk] is defined ony if α>k+1

‣ Often observed:

• Distribution of wealth, sizes of towns, frequency of

words, length of molecules, ...,

• file length, WWW documents

- Heavy-Tailed Probability Distributions in the World
Wide Web, Crovella et al. 1996

73

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Per-Node Storage

‣ Assumption:

• Storage of nodes differ by at most a factor of 100

‣ Large scale storage

• must be inserted as multiple PAST nodes

‣ Storage control:

• if a node storage is too large it is asked to split and

rejoin

• if a node storage is too small it is rejected

74

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Replica Diversion

‣ The first node close to the fileId
checks whether it can store the file
• if yes, it does and sends the store

receipt

‣ If a node A cannot store the file, it
tries replica diversion
• A chooses a node B in its leaf set

which is not among the k closest asks
B to store the copy

• If B accepts, A stores a pointer to B
and sends a store receipt

‣ When A or B fails then the replica is
inaccessible
• failure probability is doubled

75

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Policies for Replica Diversion

‣ Acceptance of replicas at a node

• If (size of a file)/(remaining free
space) > t then reject the file

- for different t`s for close nodes
(tpri) and far nodes (tdiv), where
tpri > tdiv

• discriminates large files and far
storage

‣ Selecting a node to store a
diverted replica
• in the leaf set and

• not in the k nodes closest to the
fileId

• do not hold a diverted replica of
the same file

‣ Deciding when to divert a file to
different part of the Pastry ring
• If one of the k nodes does not find

a proxy node

• then it sends a reject message

• and all nodes for the replicas
discard the file

76

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

File Diversion

‣ If k nodes close to the chosen fileId

• cannot store the file

• nor divert the replicas locally in the leafset

‣ then an error message is sent to the client

‣ The client generates a new fileId using
different salt

• and repeats the insert operation up to 3

times

• then the operation is aborted and a failure is
reported to the application

‣ Possibly the application retries with small
fragments of the file

77

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Maintaining Replicas

‣ Pastry protocols checks leaf set periodically

‣ Node failure has been recognized

- if a node is unresponsive for some certain time

• Pastry triggers adjustment of the leaf set

- PAST redistributes replicas

• if the new neighbor is too full, then other nodes in the nodes
will be uses via replica diversion

‣ When a new node arrives

• files are not moved, but pointers adjusted (replica diversion)

• because of ratio of storage to bandwidth

78

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

File Encoding

‣ k replicas is not the best redundancy strategy

‣ Using a Reed-Solomon encoding

• with m additional check sum blocks to n original data

blocks

• reduces the storage overhead to (m+n)/n times the file

size

- if all m+n shares are distributed over different nodes

• possibly speeds upt the access spee

‣ PAST

• does NOT use any such encoding techniques

79

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Caching

‣ Goal:
• Minimize fetch distance

• Maximize query throughput

• Balance the query load

‣ Replicas provide these features
• Highly popular files may demand

many more replicas

- this is provided by cache
management

‣ PAST nodes use „unused“ portion to
cache files

• cached copies can be erased at any
time

- e.g. for storing primary of
redirected replicas

‣ When a file is routed through a node
during lookup or insert it is inserted
into the local cache

‣ Cache replacement policy:
GreedyDual-Size
• considers aging, file size and costs

of a file

80

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Experimental Results Caching

81

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Summary

‣ PAST provides a distributed storage system

• which allows full storage usage and locality features

‣ Storage management

• based ond Smartcard system

- provides a hardware restriction

• utilization moderately increases failure rates and time
behavior

82

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Oceanstore
Kubiatowicz et al. 2000

Distributed Storage

83

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Oceanstore

‣ Global utility infrastructure providing
continuous access to persistent information
based on peer-to-peer network Tapestry

‣ Literature

• OceanStore: An Extremely Wide-Area
Storage System

- John Kubiatowicz, David Bindel, Yan Chen,
Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim
Weatherspoon, Westley Weimer, Chris
Wells, Ben Zhao. U.C. Berkeley Technical
Report UCB//CSD-00-1102, March 1999

• OceanStore: An Architecture for Global-
Scale Persistent Storage

- John Kubiatowicz, David Bindel, Yan Chen,
Steven Czerwinski, Patrick Eaton, Dennis
Geels, Ramakrishna Gummadi, Sean Rhea,
Hakim Weatherspoon, Westley Weimer,
Chris Wells, Ben Zhao.. ASPLOS 2000

• Extracting Guarantees from Chaos,

- John D. Kubiatowicz. Communications of
the ACM, Vol 46, No. 2, February 2003

• Pond: the OceanStore Prototype,

- Sean Rhea, Patrick Eaton, Dennis Geels,
Hakim Weatherspoon, Ben Zhao, and John
Kubiatowicz. FAST '03

84

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Motivation of Oceanstore

‣ Efficient distributed storage
providing
• Availability

- uninterrupted operation

• Durability

- information entered survives for
some 1000 years

• Access control

- only authorized read/write

• Authenticity

- no publishing of forged
documents

• Robustness against attacks

- e.g. denial of service

‣ Goals
• Massive scalability

- works with billions of clients

• Anonymity

- hard to determine producer and
reader of a document

• Deniability

- users can deny knowledge of data

• Resistance to censorship

‣ Challenge
• coping with untrusted, unreliable,

possibly evil peers

85

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Example Applications

‣ Storage server

• storing, retrieving, publishing documents

‣ E-Mail

• distributed IMAP

‣ Multimedia application

• with stream operations like append, truncate, etc.

‣ Database Application

• ACID database semantics

- i.e. atomicity, consistency, isolation, durability

86

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

First Goal

‣ Work with untrusted infrastructure

• servers may crash without warning

• network keeps on changing

• may leak or spy on information

• only clients can be trusted with cleartext

‣ Assumption:

• servers work correctly most of the time

• a certain class of servers can be trusted

- regarding correctness

- but may need read our data

87

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

2nd Goal

‣ Data

• can be cached everywhere anytime

• can float freely

‣ Nomadic Data

• Information is separated from physical location

• complicated data coherence and location

‣ Introspective monitoring

• used to discover relationship of objects

• information is used for locality management

88

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

System Overview

‣ Persistent object
• named by GUID (globally unique

identifiers)

• replicated and stored on multiple
servers

• replicas are independent from the
server

- floating replicas

‣ Locating objects and replicas

• fast probabilistic algorithm for
detecting nearby copies

• slower deterministic algorithm for
robust lookup

‣ Modifying objects by updates
• every update creates a new version

• consistency is based on versioning

• cleaner recovery

• supports permanent pointers

‣ Active and archival forms of objects

• active form

- latest version

• archival form

- permanent, read-only version

- stored by erasure codes

- spread over 100s or 1000s of
servers

- deep archival storage

89

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Virtualization

‣ Based on Tapestry

‣ Each peer has a GUID

• globally unique identifier

‣ Decentralized object location and routing

• Tapestry as overlay networks provides it

• Built upon TCP/IP

• Addressing by GUID inside Tapestry, not by IP-address

‣ Hosts

• publish the GUIDs of their resources

• may unpublish or leave the network at any time

90

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Data Model

‣ Data object
• analog of file

• ordered sequence of read-only versions

• allows „time travel“, i.e. revisiting old
versions

• allows recovering of deleted data

‣ B-tree
• organizes blocks of a data objects

• pointers reuse old blocks

91

‣ BGUID

• block GUID

• secure hash of a block of data

‣ VGUID

• version GUID

• BGUID of the root block of a version

‣ AGUID

• active GUID

• names a complete stream of versions

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Replication

‣ Primary replica
• unique first appearance of each object

• addressed by AGUID

• serializes and applies all updates to the
object

• enforces access control restrictions

‣ Certificate
• called heartbeat

• tuple containing AGUID, VGUID of most
recent version, sequence number

‣ Primary replicas are implemented on a
set of servers
• Use Byzantine-fault-tolerant

cryptographic protocol of Castro and
Liskov

92

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Replication: Archival Storage

‣ Uses Erasure Codes
• a block is divided in to m fragments

• encoded into n>m fragments

- e.g. by Reed-Solomon

• r = m/n is rate of encoding

• storage cost increases by a factor of 1/r

‣ Reconstruction
• can be done from any m fragments

‣ Prototype Pond uses
• rate 1/2-code with m=16 gives 32

fragments

• provides higher fault tolerance

‣ Each replica
• will be erasure-coded and stored using

Tapestry within the network

93

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Replication: Caching

‣ Reconstruction of erasure codes is
expensive

‣ Blocks are cached withoud encoding

‣ If a host queries Tapestry for a block
• Tapestry checks for cached blocks

• If it does not exist, Tapestry performs
decoding

• Then Tapestry stores the copies

- second replicas

• Blocks are stored in soft-state

- can be erased at any time

‣ Caching in Oceanstore prototype uses
Least-Recently-Used (LRU) strategy

94

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

The Problem of Byzantine
Generals

‣ 3 armies prepare to attack a castle
‣ They are separated and communicate

by messengers

‣ If one army attacks alone, it loses
‣ If two armies attack, they win

‣ If nobody attacks the castle is
besieged and they win

‣ One general is a renegade
• nobody knows who

95

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

The Problem of Byzantine
Generals

‣ The evil general X tries
• to convince A to attack

• to convince B to wait

‣ A tells B about X‘s command
‣ B tells B about his version of X‘s

command

• contradiction

‣ But is A, B, or X lying?

Attack!

Wait!

X

A

B

96

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

The Problem of Byzantine
Generals

‣ The evil general X tries
• to convince A to attack

• to convince B to wait

‣ A tells B about X‘s command
‣ B tells B about his version of X‘s

command

• contradiction

‣ But is A, B, or X lying?

Attack!

Wait!

X

A

B

Atta
ck

?

W
ait?

97

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Byzantine Agreement

‣ Theorem
• The problem of three byzantine

generals cannot be solved (without
cryptography)

• It can be solved for 4 generals

‣ Consider: 1 general, 3 officers
problem
• If the general is loyal then all loyal

officers will obey the command

• In any case distribute the received
commans to all fellow officers

• What if the general is the renegade?

Evildoer

General A: Attack! A: Attack!

A: AttackA: don‘t care!

98

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Byzantine Agreement

‣ Theorem
• The problem of four byzantine

generals can be solved (without
cryptography)

‣ Algorithm
• General A sends his command to all

other generals

- A sticks to his command if he is
honest

• All other generals forward the received
command to all other generals

• Every generals computes the majority
decision of the received commands
and follows this command

Evildoer

General A: Attack!

A: Attack
B: Attack
C: Attack
D: Attack

A: Attack
B: Wait
C: Attack
D: Attack

don‘t care!

A

B

D

C
99

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Byzantine Agreement

‣ Theorem
• The problem of four byzantine

generals can be solved (without
cryptography)

‣ Algorithm
• General A sends his command to all

other generals

- A sticks to his command if he is
honest

• All other generals forward the received
command to all other generals

• Every generals computes the majority
decision of the received commands
and follows this command

‣
Evildoer

A: Wait
B: Wait
C: Wait
D: Attack

A: Attack
B: Wait
C: Wait
D: Attack

General A: Confuse!

A: Wait
B: Wait
C: Wait
D: Attack

A

B C

D
100

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

General Solution of Byzantine
Agreement

‣ Theorem

• If m generals are traitors then 2m+1 generals must be honest to get
a Byzantine Agreement

‣ This bound is sharp if one does not rely on cryptography

‣ Theorem

• If a digital signature scheme is working, then an arbitrarily large
number of betraying generals can be dealt with

‣ Solution

• Every general signs his command

• All commands are shared together with the signature

• Inconsistent commands can be detected

• The evildoer can be exposed

101

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Update Model

‣ Updates are applied atomically

• represented as an array of potential actions and
predicates

‣ Example actions

• replacing a set of bytes in the objects

• appending new data to the end of the object

• truncating the object

• checking latest version of the object

102

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Introspection

‣ Cycle of

• Observation

• Optimization

• Computation

‣ Uses

• Cluster recognition

• Replica management

• Performance of routing structure, availability and

durability of archival fragments, recognition of
unreliably peers

103

Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Summary

‣ Prototype of Oceanstore has been recently released

• Pond (presented 2003)

‣ Plus

• Oceanstore provides more file system like structures

• Efficient routing and caching

• Consistent updates

• Space efficient archival system

• Access control

‣ Contra

• complex design

104

Albert-Ludwigs-Universität Freiburg
Institut für Informatik
Rechnernetze und Telematik
Wintersemester 2007/08

Algorithms and Methods for
Distributed Storage Networks
11 Peer-to-Peer Storage (final version)

Christian Schindelhauer

