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Outline

‣ Principles and history

‣ Algorithms and Methods

• DHTs

• Chord

• Pastry and Tapestry

‣ P2P Storage Systems

• PAST

• Oceanstore

‣ Further Issues

• Bandwidth

• Anonymity, Security

• Availability and Robustness

2



Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Global Internet Traffic Shares
1993-2004

Source: CacheLogic 2005
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Global Internet Traffic 2007

‣ Ellacoya report (June 2007)
• worldwide HTTP traffic 

volume overtakes P2P after 
four years continues record 

‣ Main reason: Youtube.com
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Milestones P2P Systems

‣ Napster (1st version: 
1999-2000)

‣ Gnutella (2000), Gnutella-2 
(2002)

‣ Edonkey (2000)
• later: Overnet usese 

Kademlia

‣ FreeNet (2000)
• Anonymized download

‣ JXTA (2001)

• Open source P2P network 
platform

‣ FastTrack (2001)
• known from KaZaa, 

Morpheus, Grokster

‣ Bittorrent (2001) 
• only download, no search

‣ Skype (2003)

• VoIP (voice over IP), Chat, 
Video
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Milestones Theory

‣ Distributed Hash-Tables (DHT) (1997)
• introduced for load balancing 

between web-servers

‣ CAN (2001)
• efficient distributed DHT data 

structure for P2P networks

‣ Chord (2001)

• efficient distributed P2P network with 
logarithmic search time

‣ Pastry/Tapestry (2001)

• efficient distributed P2P network 
using Plaxton routing

‣ Kademlia (2002)
• P2P-Lookup based on XOr-Metrik

‣ Many more exciting approaches

• Viceroy, Distance-Halving, Koorde, 
Skip-Net, P-Grid, ...

‣ Recent developments
• Network Coding for P2P

• Game theory in P2P

• Anonymity, Security
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What is a P2P Network?

‣ What is P2P NOT?

• a peer-to-peer network is not a client-server network

‣ Etymology: peer

• from latin par = equal

• one that is of equal standing with another

• P2P, Peer-to-Peer: a relationship between equal partners

‣ Definition

• a Peer-to-Peer Network is a communication network between 
computers in the Internet

- without central control

- and without reliable partners

‣ Observation

• the Internet can be seen as a large P2P network

7
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Napster

‣ Shawn (Napster) Fanning
• published 1999 his beta version of the now legendary 

Napster P2P network
• File-sharing-System

• Used as mp3 distribution system
• In autumn 1999 Napster has been called download of the 

year
‣ Copyright infringement lawsuit of the music industry in 

June 2000
‣ End of 2000: cooperation deal

• between Fanning and Bertelsmann Ecommerce

‣ Since then Napster is a commercial file-sharing platform

8
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How Did Napster Work?

‣ Client-Server
‣ Server stores

•  Index with meta-data

- file name, date, etc

• table of connections of participating 
clients

• table of all files of participants

‣ Query
• client queries file name

• server looks up corresponding clients

• server replies the owner of the file

• querying client downloads the file 
from the file owning client

9
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History of Gnutella

‣ Gnutella

• was released in March 2000 by Justin Frankel and Tom 
Pepper from Nullsoft

• Since 1999 Nullsoft is owned by AOL

‣ File-Sharing system

• Same goal as Napster

• But without any central structures
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Gnutella — 
Connecting

‣ Neighbor lists
• Gnutella connects directly with other 

clients

• the client software includes a list of 
usually online clients

• the clients checks these clients until 
an active node has been found

• an active client publishes its neighbor 
list

• the query (ping) is forwarded to other 
nodes

• the answer (pong) is sent back

• neighbor lists are extended and stored

• the number of the forwarding is 

11
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Gnutella — 
Connecting

‣ Protokoll
• Ping

- participants query for neighbors

- are forwarded according for TTL 
steps (time to live)

• Pong

- answers Ping

- is forwarded backward on the 
query path

- reports IP and port adress (socket 
pair)

- number and size of available files

12
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Gnutella — 
Query

‣ File Query
• are sent to all neighbors

• Neighbors forward to all neighbors

• until the maximum hop distance has 
been reached 

-  TTL-entry (time to live)

‣ Protocol

• Query

- for file for at most TTL hops

• Query-hits

- answers on the path backwards

‣ If file has been found, then initiate 
direct download
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Gnutella — Graph Structure

‣ Graph structure
• constructed by random process

• underlies power law

• without control

Gnutella snapshot in 2000
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Figure 2.2: Log-log plots of degree versus rank (power-law 1)

node degree power-law exponent of −1.4 for the Gnutella topology. We must remark

that a group called Clip2 independently discovered this particular power-law for the

Gnutella network topology [13]. However they reported the power-law exponent of

−2.3, in disagreement with our result. We believe the reason for this discrepancy is

due to the fact that our results are based on the network crawls performed during

December of 2000, while the other result dates back to the summer of the same year.

Since that time, the Gnutella network has undergone significant changes in terms

of its structure and size, as described in [13]. While the values of the node degree

exponent O for all of the Gnutella topology instances obtained during the month of

December are consistently around −1.4, we have observed O values of −1.6 for the

data obtained in November. This may be taken as indication of a highly-dynamic,

evolving state of the Gnutella network. We are nevertheless currently attempting to

establish contact with people from Clip2 in order to further examine reasons for this

discrepancy. Interestingly, power-law degree distributions have recently been reported

for another file-sharing P2P applications, Freenet [22].
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Why Gnutella Does Not Really 
Scale

‣ Gnutella
• graph structure is random

• degree of nodes is small

• small diameter

• strong connectivity

‣ Lookup is expensive

• for finding an item the whole network 
must be searched

‣ Gnutella‘s lookup does not scale

• reason: no structure within the index 
storage
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Chord

‣ Ion Stoica, Robert Morris, David 
Karger, M. Frans Kaashoek and Hari 
Balakrishnan (2001)

‣ Distributed Hash Table

• range {0,..,2m-1} 

• for sufficient large m

‣ Network

• ring-wise connections

• shortcuts with exponential increasing 
distance
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Chord as DHT

‣ n number of peers
‣ V set of peers

‣ k number of data stored
‣ K set of stored data

‣ m: hash value length
• m ≥ 2 log max{K,N} 

‣ Two hash functions mapping to 
{0,..,2m-1}
• rV(b): maps peer to {0,..,2m-1}

• rK(i): maps index according to key i to 
{0,..,2m-1} 

‣ Index i maps to peer b = fV(i)
• fV(i) := arg minb∈V{(rV(b)-rK(i)) mod 2m}
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Pointer Structure of  Chord

‣ For each peer
• successor link on the ring

• predecessor link on the ring

• for all i ∈ {0,..,m-1}

- Finger[i] := the peer following the 
value rV(b+2i)

‣ For small i the finger entries are the 
same

• store only different entries

‣ Lemma
• The number of different finger entries 

is O(log n) with high probability, i.e. 1-
n-c.
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Data Structure of Chord

‣ For each peer
• successor link on the ring

• predecessor link on the ring

• for all i ∈ {0,..,m-1}

- Finger[i] := the peer following the 
value rV(b+2i)

‣ For small i the finger entries are the 
same

• store only different entries

‣ Chord
• needs O(log n) hops for lookup

• needs O(log2 n) messages for 
inserting and erasing of peers

19
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Lookup in Chord

‣ Theorem 
• The Lookup in Chord needs O(log n) 

steps w.h.p.
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How Many Fingers?

‣ Lemma
• The out-degree in Chord is O(log n) w.h.p.

• The in-degree in Chord is O(log2n) w.h.p.

‣ Theorem 

• For integrating a new peer into Chord 
only O(log2 n) messages are necessary.
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Adding a Peer

‣ First find the target area in O(log n) 
steps

‣ The outgoing pointers are adopted from 
the predecessor and successor
• the pointers of at most O(log n) 

neighbored peers must be adapted

‣ The in-degree of the new peer is 
O(log2n) w.h.p.

• Lookup time for each of them

• There are O(log n) groups of neighb 
ored peers

• Hence, only O(log n) lookup steps with 
at most costs O(log n) must be used

• Each update of has constant cost
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Pastry
Peer-to-Peer Networks

23
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Pastry

‣ Peter Druschel 

• Rice University, Houston, Texas 

• now head of Max-Planck-Institute for Computer Science, Saarbrücken/
Kaiserslautern

‣ Antony Rowstron

• Microsoft Research, Cambridge, GB

‣ Developed in Cambridge (Microsoft Research)

‣ Pastry

• Scalable, decentralized object location and routing for large scale peer-to-
peer-network 

‣ PAST

• A large-scale, persistent peer-to-peer storage utility

‣ Two names one P2P network

• PAST is an application for Pastry enabling the full P2P data storage 
functionality

• First, we concentrate on Pastry
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Pastry Overview

‣ Each peer has a 128-bit ID: nodeID
• unique and uniformly distributed

• e.g. use cryptographic function 
applied to IP-address

‣ Routing
• Keys are matched to {0,1}128

• According to a metric messages are 
distributed to the neighbor next to 
the target

‣ Routing table has 
O(2b(log n)/b) + l  entries

• n: number of peers

• l: configuration parameter

• b: word length

- typical: b= 4 (base 16), 
l = 16

- message delivery is guaranteed as 
long as less than l/2 neighbored 
peers fail

‣ Inserting a peer and finding a key 
needs O((log n)/b) messages
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Routing Table

‣ NodeId presented in base 2b

• e.g. NodeID: 65A0BA13
‣ For each prefix p and letter x ∈ {0,..,2b-1}  add an peer 

of form px* to the routing table of NodeID, e.g.
• b=4, 2b=16
• 15 entries for 0*,1*, .. F*
• 15 entries for 60*, 61*,... 6F*
• ...
• if no peer of the form exists, then the entry remains 

empty
‣ Choose next neighbor according to a distance metric

• metric results from the RTT (round trip time)

‣ In addition choose l neighors

• l/2 with next higher ID

• l/2 with next lower ID

26
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Routing Table

‣ Example b=2
‣ Routing Table

• For each prefix p and letter x ∈ {0,..,2b-1}  
add an peer of form px* to the routing 
table of NodeID

‣ In addition choose l neighors 

• l/2 with next higher ID

• l/2 with next lower ID

‣ Observation
• The leaf-set alone can be used to find a 

target

‣ Theorem
• With high probability there are at most 

O(2b (log n)/b) entries in each routing 
table
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Routing Table

‣ Theorem
• With high probability there are at 

most O(2b (log n)/b) entries in each 
routing table

‣ Proof
• The probability that a peer gets the 

same m-digit prefix is

• The probability that a m-digit prefix is 
unused is

• For m=c (log n)/b we get

• With (extremely) high probability 
there is no peer with the same prefix 
of length (1+ε)(log n)/b

• Hence we have (1+ε)(log n)/b rows 
with 2b-1 entries each
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A Peer Enters

‣ New node x sends message to the node z with the 
longest common prefix p

‣ x receives

• routing table of z

• leaf set of z

‣ z updates leaf-set

‣ x informs  l-leaf set

‣ x informs peers in routing table

• with same prefix p (if l/2 < 2b)

‣ Numbor of messages for adding a peer

• l messages to the leaf-set

• expected (2b - l/2) messages to nodes with 

common prefix 

• one message to z with answer
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When the Entry-Operation Errs

‣ Inheriting the next neighbor routing table does 
not allows work perfectly

‣ Example

• If no peer with 1* exists then all other peers 
have to point to the new node

• Inserting 11

• 03 knows from its routing table

- 22,33

- 00,01,02

• 02 knows from the leaf-set

- 01,02,20,21

‣ 11 cannot add all necessary links to the 
routing tables

30
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Missing Entries in the Routing 
Table

‣ Assume the entry Rij is missing at peer 
D
• j-th row and i-th column of the routing 

table

‣ This is noticed if a message of a peer 
with such a prefix is received

‣ This may also happen if a peer leaves 
the network

‣ Contact peers in the same row
• if they know a peer this address is 

copied

‣ If this fails then perform routing to the 
missing link

31
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Lookup

‣ Compute the target ID using the hash function

‣ If the address is within the l-leaf set

• the message is sent directly

• or it discovers that the target is missing

‣ Else use the address in the routing table to 
forward the mesage

‣ If this fails take best fit from all addresses

32



Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Lookup in Detail

‣ L: 	 l-leafset

‣ R:	 routing table

‣ M:  nodes in the vicinity of D
 (according to RTT)

‣ D: 	 key

‣ A:	 nodeID of current peer

‣ Ril: 	 j-th row and i-th column of 
	 the routing table

‣ Li: 	 numbering of the leaf set

‣ Di: 	 i-th digit of key D
‣ shl(A):  length of the largest common
 prefix of A and D 
 (shared header length)
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Routing — Discussion

‣ If the Routing-Table is correct 

• routing needs O((log n)/b) messages

‣ As long as the leaf-set is correct

• routing needs O(n/l) messages

• unrealistic worst case since even damaged routing tables 

allow dramatic speedup

‣ Routing does not use the real distances

• M is used only if errors in the routing table occur

• using locality improvements are possible

‣ Thus, Pastry uses heuristics for improving the lookup time

• these are applied to the last, most expensive, hops
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Localization of the k Nearest 
Peers

‣ Leaf-set peers are not near, e.g.

• New Zealand, California, India, ...

‣ TCP protocol measures latency 

• latencies (RTT) can define a metric

• this forms the foundation for finding the nearest peers

‣ All methods of Pastry are based on heuristics

• i.e. no rigorous (mathematical) proof of efficiency

‣ Assumption: metric is Euclidean
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Locality in the Routing Table

‣ Assumption

• When a peer is inserted the peers contacts a 
near peer

• All peers have optimized routing tables

‣ But:

• The first contact is not necessary near according 
to the node-ID

‣ 1st step

• Copy entries of the first row of the routing table 
of P

- good approximation because of the triangle 
inequality (metric)

‣ 2nd step

• Contact fitting peer p‘ of p with the same first 
letter

• Again the entries are relatively close

‣ Repeat these steps until all entries are updated
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Locality in the Routing Table

‣ In the best case
• each entry in the routing table is 

optimal w.r.t. distance metric

• this does not lead to the shortest path

‣ There is hope for short lookup times
• with the length of the common prefix 

the latency metric grows exponentially

• the last hops are the most expensive 
ones

• here the leaf-set entries help
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Localization of Near Nodes

‣ Node-ID metric and latency metric are not compatible

‣ If data is replicated on k peers then peers with similar 
Node-ID might be missed

‣ Here, a heuristic is used

‣ Experiments validate this approach

38



Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Experimental Results — 
Scalability

‣ Parameter b=4, l=16, M=32
‣ In this experiment the hop distance 

grows logarithmically with the number 
of nodes

‣ The analysis predicts  O(log n)
‣ Fits well
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Experimental Results
Distribution of Hops

40

‣ Parameter b=4, l=16, M=32, 
n = 100,000

‣ Result

• deviation from the expected hop 
distance is extremely small

‣ Analysis predicts difference with 
extremely small probability
• fits well
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Experimental Results — 
Latency

‣ Parameter b=4, l=16, M=3
‣ Compared to the shortest path 

astonishingly small

• seems to be constant
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Tapestry
Zhao, Kubiatowicz und Joseph (2001)

42
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Tapestry

‣ Objects and Peers are identified by 

• Objekt-IDs (Globally Unique Identifiers GUIDs) and 

• Peer-IDs

‣ IDs 

• are computed by hash functions

- like CAN or Chord

• are strings on basis B

- B=16 (hexadecimal system)
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Neighborhood of a Peer (1)

‣ Every peer A maintains for each prefix 
x of the Peer-ID
• if a link to another peer sharing this 

Prefix x

• i.e. peer with ID B=xy has a neighbor  
A, if xy´=A for some y, y´

‣ Links sorted according levels
• the level denotes the length of the 

common prefix

• Level L = |x|+1

44



‣ For each prefix x and all letters j of 
the peer with ID A
• establish a link to a node with prefix xj within the 

neighboorhood set 
‣ Peer with Node-ID A has b |A| neighborhood sets
‣ The neighborhood set of contains all nodes with 

prefix sj
• Nodes of this set are denoted by (x,j)
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Neighborhood Set (2)
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Example of Neighborhood Sets

4220 420? 40?? 0???4220 420? 40?? 0???

4221 421? 41?? 1???4221 421? 41?? 1???

4222 422? 42?? 2???4222 422? 42?? 2???

4223 423? 43?? 3???4223 423? 43?? 3???

4224 424? 44?? 4???4224 424? 44?? 4???

4225 425? 45?? 5???4225 425? 45?? 5???

4226 426? 46?? 6???4226 426? 46?? 6???

4227 427? 47?? 7???4227 427? 47?? 7???

Neighborhood set of node 4221

j=0

j=1

j=7

.

.

.

.

.

.

Level 4 Level 3 Level 1Level 2
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Links

‣ For each neighborhood set at most k Links are 
maintained

‣ Note:

• some neighborhood sets are empty

47



Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Properties of Neighborhood Sets

‣ Consistency
• If                 for any A

- then there are no (x,j) peers in the network

- this is called a hole in the routing table of level |x|+1 with letter j

‣ Network is always connected
• Routing can be done by following the letters of the ID b1b2…bn

1st hop to node A1

2nd hop to node A2

3rd hop to node A3

…
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Locality

‣ Metric

• e.g. given by the latency between nodes

‣ Primary node of a neighborhood set

• The closest node (according to the metric) in the 
neighborhood set of A is called the primary node

‣ Secondary node

• the second closest node in the neighborhood set

‣ Routing table

• has primary and secondary node of the neighborhood 

table
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Root Node

‣ Object with ID Y should stored by a so-called Root 
Node with this ID

‣ If this ID does not exist then a deterministic choice 
computes the next best choice sharing the greatest 
commen prefix
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Surrogate Routing

‣ Surrogate Routing

• compute a surrogate (replacement root node)

• If (x,j) is a hole, then choose (x,j+1),(x,j+2),…,(x,B),(x,
0), ..., (x,j-1) until a node is found

• Continue search in the next higher  if no node has been 
found
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Example: Surrogate Routing

2716

4233

4899

4860

Level 1, j=4

Level 2, j=6 does not exist, next link j=8

Level 3, j=6

Peer 4860 has no level 4 neighbors => end of search

52
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Publishing Objects

‣ Peers offering an object (storage 
servers)
• send message to the root node

‣ All nodes along the search path store 
object pointers to the storage server
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Lookup

‣ Choose the root node of Y
‣ Send a message to this node

• using primary nodes

‣ Abort search if an object link has been 
found
• then send message to the storage 

server
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Fault Tolerance

‣ Copies of object IDs

• use different hash functions for multiple root nodes for 
objects

• failed searches can be repeated with different root 
nodes

‣ Soft State Pointer

• links of objects are erased after a designated time

• storage servers have to republish

- prevents dead links

- new peers receive fresh information
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Surrogate Routing

‣ Theorem

• Routing in Tapestry needs O(log n) hops with high 
probability
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Adding Peers

‣ Perform lookup in the network for the own ID

• every message is acknowledged

• send message to all neighbors with fitting prefix,

- Acknowledged Multicast Algorithm

‣ Copy neighborhood tables of surrogate peer

‣ Contact peers with holes in the routing tables

• so they can add the entry

• for this perform multicast algorithm for finding such peers
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A

B

Root

Leaving of Peers

‣ Peer A notices that peer B has left
‣ Erase B from routing table

• Problem holes in the network can 
occur

‣ Solution: Acknowledged Multicast 
Algorithm

‣ Republish all object with next hop to 
root peer B
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Pastry versus Tapestry
‣ Both use the same routing principle

• Plaxton, Rajamaran und Richa

• Generalization of routing on the hyper-cube

‣ Tapestry

• is not completely self-organizing

• takes care of the consistency of routing table

• is analytically understood and has provable performance

‣ Pastry

• Heuristic methods to take care of leaving peers

• More practical (less messages)

• Leaf-sets provide also robustness
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Past
Druschel, Rowstron

2001

Distributed Storage
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PAST

‣ PAST: A large-scale, persistent peer-to-peer storage utility

• by Peter Druschel (Rice University, Houston – now Max-
Planck-Institut, Saarbrücken/Kaiserlautern)

• and Antony Rowstron (Microsoft Research)

‣ Literature

• A. Rowstron and P. Druschel, "Storage management and 

caching in PAST, a large-scale, persistent peer-to-peer 
storage utility", 18th ACM SOSP'01, 2001.

- all pictures from this paper

• P. Druschel and A. Rowstron, "PAST: A large-scale, persistent 

peer-to-peer storage utility", HotOS VIII,  May 2001.
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Goals of PAST

‣ Peer-to-Peer based Internet Storage 

• on top of Pastry 

‣ Goals

• File based storage

• High availability of data

• Persistent storage 

• Scalability

• Efficient usage of resources
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Motivation

‣ Multiple, diverse nodes in the Internet can be used

• safety by different locations

‣ No complicated backup

• No additional backup devices

• No mirroring

• No RAID or SAN systems with special hardware

‣ Joint use of storage

• for sharing files

• for publishing documents

‣ Overcome local storage and data safety limitations
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Interface of PAST

‣ Create:
fileId = Insert(name, owner-
credentials, k, file)

• stores a file at a user-specified 
number k of divers nodes within the 
PAST network

• produces a 160 bit ID which 
identifies the file (via SHA-1)

‣ Lookup:
file = Lookup(fileId)

• reliably retrieves a copy of the file 
identified fileId

‣ Reclaim:
Reclaim(fileId, owner-credentials)

• reclaims the storage occupied by the 
k copies of the file identified by fileId

‣ Other operations do not exist:

• No erase

- to avoid complex agreement 
protocols

• No write or rename

- to avoid write conflicts

• No group right management

- to avoid user, group 
managements

• No list files, file information, etc.

‣ Such operations must be provided by 
additional layer
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Relevant Parts of Pastry

‣ Leafset:

• Neighbors on the ring

‣ Routing Table

• Nodes for each prefix + 1 
other letter

‣ Neighborhood set

• set of nodes which have 
small TTL
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nodeId in the first n digits, but whose n + 1th digit has
one of the 2b − 1 possible values other than the n + 1th
digit in the present node’s id. Each entry in the routing
table points to one of potentially many nodes whose nodeId
have the appropriate prefix; in practice, a node is chosen
that is close to the present node, according to the proximity
metric. If no node is known with a suitable nodeId, then the
routing table entry is left empty. The uniform distribution
of nodeIds ensures an even population of the nodeId space;
thus, only "log2bN# levels are populated in the routing table.

In addition to the routing table, each node maintains IP
addresses for the nodes in its leaf set and its neighborhood
set. The leaf set is the set of nodes with the l/2 numeri-
cally closest larger nodeIds, and the l/2 nodes with numer-
ically closest smaller nodeIds, relative to the present node’s
nodeId. The neighborhood set is a set of l nodes that are
near the present node, according to the proximity metric.
It is not used in routing, but is useful during node addi-
tion/recovery. Figure 1 depicts the state of a PAST node
with the nodeId 10233102 (base 4), in a hypothetical system
that uses 16 bit nodeIds and values of b = 2 and l = 8.

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203

0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302

102-0-0230 102-1-1302 102-2-2302 3

1023-0-322 1023-1-000 1023-2-121 3

10233-0-01 1 10233-2-32

0 102331-2-0

2

Neighborhood set
13021022 10200230 11301233 31301233

02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122

10233001 10233000 10233230 10233232

LARGERSMALLER

Figure 1: State of a hypothetical Pastry node with
nodeId 10233102, b = 2, and l = 8. All numbers
are in base 4. The top row of the routing table
represents level zero. The shaded cell at each level
of the routing table shows the corresponding digit
of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with
10233102 - next digit - rest of nodeId. The associated IP
addresses are not shown.

In each routing step, a node normally forwards the mes-
sage to a node whose nodeId shares with the fileId a prefix
that is at least one digit (or b bits) longer than the prefix
that the fileId shares with the present node’s id. If no such
node is known, the message is forwarded to a node whose
nodeId shares a prefix with the fileId as long as the current
node, but is numerically closer to the fileId than the present
node’s id. Such a node must be in the leaf set unless the
message has already arrived at the node with numerically
closest nodeId. And, unless $l/2% adjacent nodes in the leaf
set have failed simultaneously, at least one of those nodes
must be live.
Locality Next, we briefly discuss Pastry’s properties with

respect to the network proximity metric. Recall that the
entries in the node routing tables are chosen to refer to a
nearby node, in terms of the proximity metric, with the ap-
propriate nodeId prefix. As a result, in each step a message
is routed to a “nearby” node with a longer prefix match
(by one digit). This local heuristic obviously cannot achieve
globally shortest routes, but simulations have shown that
the average distance traveled by a message, in terms of the
proximity metric, is only 50% higher than the corresponding
“distance” of the source and destination in the underlying
network [27].

Moreover, since Pastry repeatedly takes a locally “short”
routing step towards a node that shares a longer prefix with
the fileId, messages have a tendency to first reach a node,
among the k nodes that store the requested file, that is near
the client, according to the proximity metric. One exper-
iment shows that among 5 replicated copies of a file, Pas-
try is able to find the “nearest” copy in 76% of all lookups
and it finds one of the two “nearest” copies in 92% of all
lookups [27].
Node addition and failure A key design issue in Pastry is
how to efficiently and dynamically maintain the node state,
i.e., the routing table, leaf set and neighborhood sets, in
the presence of node failures, node recoveries, and new node
arrivals. The protocol is described and evaluated in full
detail in [27].

Briefly, an arriving node with the newly chosen nodeId
X can initialize its state by contacting a “nearby” node A
(according to the proximity metric) and asking A to route
a special message with the destination set to X. This mes-
sage is routed to the existing node Z with nodeId numer-
ically closest to X2. X then obtains the leaf set from Z,
the neighborhood set from A, and the ith row of the routing
table from the ith node encountered along the route from
A to Z. One can show that using this information, X can
correctly initialize its state and notify all nodes that need to
know of its arrival, thereby restoring all of Pastry’s invari-
ants.

To handle node failures, neighboring nodes in the nodeId
space (which are aware of each other by virtue of being in
each other’s leaf set) periodically exchange keep-alive mes-
sages. If a node is unresponsive for a period T , it is presumed
failed. All members of the failed node’s leaf set are then no-
tified and they update their leaf sets to restore the invariant.
Since the leaf sets of nodes with adjacent nodeIds overlap,
this update is trivial. A recovering node contacts the nodes
in its last known leaf set, obtains their current leafs sets,
updates its own leaf set and then notifies the members of
its new leaf set of its presence. Routing table entries that
refer to failed nodes are repaired lazily; the details are not
relevant to the subject of this paper [27].

Pastry, as described so far, is deterministic and thus vul-
nerable to malicious or failed nodes along the route that ac-
cept messages but do not correctly forward them. Repeated
queries could thus fail each time, since they are likely to take
the same route. To overcome this problem, the routing is ac-
tually randomized. To avoid routing loops, a message must
always be forwarded to a node that shares at least as long a
prefix with, but is numerically closer to the destination node
in the namespace than the current node. The choice among
multiple such nodes is random. In practice, the probabil-

2In the exceedingly unlikely event that X and Z are equal,
the new node must obtain a new nodeId.
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Interfaces of Pastry

‣ route(M, X): 

• route message M to node with nodeId numerically 
closest to X

‣ deliver(M): 

• deliver message M to application

‣ forwarding(M, X): 

• message M is being forwarded towards key X

‣ newLeaf(L): 

• report change in leaf set L to application 
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Insert Request Operation

‣ Compute fileId by hashing
• file name

• public key of client

• some random numbers, called salt

‣ Storage (k x filesize)

• is debited against client‘s quota

‣ File certificate
• is produced and signed with owner‘s 

private key

• contains fileID, SHA-1 hash of file‘s 
content, replciation factor k, the 
random salt, creation date, etc. 

‣ File and certificate are routed via 
Pastry
• to node responsible for fileID

‣ When it arrives in one node of the k 
nodes close to the fileId
• the node checks the validityof the file

• it is duplicated to all other k-1 nodes 
numerically close to fileId

‣ When all k nodes have accepted a 
copy
• Each nodes sends store receipt is 

send to the owner

‣ If something goes wrong an error 
message is sent back
• and nothing stored
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Lookup

‣ Client sends message with requested fileId into the 
Pastry network

‣ The first node storing the file answers

• no further routing

‣ The node sends back the file

‣ Locality property of Pastry helps to send a close-by 
copy of a file
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Reclaim

‣ Client‘s nodes sends reclaim certificate

• allowing the storing nodes to check that the claim is 
authentificated

‣ Each node sends a reclaim receipt

‣ The client sends this recept to the retrieve the storage 
from the quota management
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Security

‣ Smartcard

• for PAST users which want to store files

• generates and verifies all certificates

• maintain the storage quotas

• ensure the integrity of nodeID and fileID assignment

‣ Users/nodes without smartcard

• can read and serve as storage servers

‣ Randomized routing

• prevents intersection of messages

‣ Malicious nodes only have local influence

70



Distributed Storage Networks
Winter 2008/09

Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg

Christian Schindelhauer

Storage Management

‣ Goals

• Utilization of all storage 

• Storage balancing

• Providing k file replicas

‣ Methods

• Replica diversion

- exception to storing replicas nodes in the leafset

• File diversion

- if the local nodes are full all replicas are stored at 
different locations
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Causes of Storage Load 
Imbalance

‣ Statistical variation

• birthday paradoxon (on a weaker scale)

‣ High variance of the size distribution

• Typical heavy-tail distribution, e.g. Pareto distribution

‣ Different storage capacity of PAST nodes
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Heavy Tail Distribution

‣ Discrete Pareto Distribution for x ∈ {1,2,3,…}  

• with constant factor

‣ Heavy tail

• only for small k moments E[Xk] are defined

• Expectation is defined only if α>2

• Variance and E[X2] only exist if α>3

• E[Xk] is defined ony if α>k+1

‣ Often observed:

• Distribution of wealth, sizes of towns, frequency of 

words, length of molecules, ..., 

• file length, WWW documents

- Heavy-Tailed Probability Distributions in the World 
Wide Web, Crovella et al. 1996
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Per-Node Storage

‣ Assumption:

• Storage of nodes differ by at most a factor of 100

‣ Large scale storage

• must be inserted as multiple PAST nodes

‣ Storage control:

• if a node storage is too large it is asked to split and 

rejoin

• if a node storage is too small it is rejected
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Replica Diversion

‣ The first node close to the fileId 
checks whether it can store the file
• if yes, it does and sends the store 

receipt

‣ If a node A cannot store the file, it 
tries replica diversion
• A chooses a node B in its leaf set 

which is not among the k closest asks 
B to store the copy

• If B accepts, A stores a pointer to B 
and sends a store receipt

‣ When A or B fails then the replica is 
inaccessible
• failure probability is doubled
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Policies for Replica Diversion

‣ Acceptance of replicas at a node

• If (size of a file)/(remaining free 
space) > t then reject the file

- for different t`s for close nodes 
(tpri) and far nodes (tdiv), where 
tpri > tdiv

• discriminates large files and far 
storage

‣ Selecting a node to store a 
diverted replica
• in the leaf set and

• not in the k nodes closest to the 
fileId

• do not hold a diverted replica of 
the same file

‣ Deciding when to divert a file to 
different part of the Pastry ring
• If one of the k nodes does not find 

a proxy node

• then it sends a reject message

• and all nodes for the replicas 
discard the file
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File Diversion

‣ If k nodes close to the chosen fileId

• cannot store the file

• nor divert the replicas locally in the leafset

‣ then an error message is sent to the client

‣ The client generates a new fileId using 
different salt

• and repeats the insert operation up to 3 

times

• then the operation is aborted and a failure is 
reported to the application

‣ Possibly the application retries with small 
fragments of the file
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Maintaining Replicas

‣ Pastry protocols checks leaf set periodically

‣ Node failure has been recognized

- if a node is unresponsive for some certain time

• Pastry triggers adjustment of the leaf set

- PAST redistributes replicas

• if the new neighbor is too full, then other nodes in the nodes 
will be uses via replica diversion

‣ When a new node arrives

• files are not moved, but pointers adjusted (replica diversion)

• because of ratio of storage to bandwidth 
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File Encoding

‣ k replicas is not the best redundancy strategy

‣ Using a Reed-Solomon encoding

• with m additional check sum blocks to n original data 

blocks

• reduces the storage overhead to (m+n)/n times the file 

size

- if all m+n shares are distributed over different nodes

• possibly speeds upt the access spee

‣ PAST

• does NOT use any such encoding techniques
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Caching

‣ Goal:
• Minimize fetch distance

• Maximize query throughput

• Balance the query load

‣ Replicas provide these features
• Highly popular files may demand 

many more replicas

- this is provided by cache 
management

‣ PAST nodes use „unused“ portion to 
cache files

• cached copies can be erased at any 
time

- e.g. for storing primary of 
redirected replicas

‣ When a file is routed through a node 
during lookup or insert it is inserted 
into the local cache

‣ Cache replacement policy: 
GreedyDual-Size
• considers aging, file size and costs 

of a file
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Experimental Results Caching
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Summary

‣ PAST provides a distributed storage system

• which allows full storage usage and locality features

‣ Storage management

• based ond Smartcard system 

- provides a hardware restriction

• utilization moderately increases failure rates and time 
behavior
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Oceanstore
Kubiatowicz et al. 2000

Distributed Storage
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Oceanstore

‣ Global utility infrastructure providing 
continuous access to persistent information 
based on peer-to-peer network Tapestry

‣ Literature

• OceanStore: An Extremely Wide-Area 
Storage System

- John Kubiatowicz, David Bindel, Yan Chen, 
Patrick Eaton, Dennis Geels, Ramakrishna 
Gummadi, Sean Rhea, Hakim 
Weatherspoon, Westley Weimer, Chris 
Wells, Ben Zhao. U.C. Berkeley Technical 
Report UCB//CSD-00-1102, March 1999

• OceanStore: An Architecture for Global-
Scale Persistent Storage

- John Kubiatowicz, David Bindel, Yan Chen, 
Steven Czerwinski, Patrick Eaton, Dennis 
Geels, Ramakrishna Gummadi, Sean Rhea, 
Hakim Weatherspoon, Westley Weimer, 
Chris Wells, Ben Zhao.. ASPLOS 2000

• Extracting Guarantees from Chaos, 

- John D. Kubiatowicz. Communications of 
the ACM, Vol 46, No. 2, February 2003

• Pond: the OceanStore Prototype, 

- Sean Rhea, Patrick Eaton, Dennis Geels, 
Hakim Weatherspoon, Ben Zhao, and John 
Kubiatowicz.  FAST '03
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Motivation of Oceanstore

‣ Efficient distributed storage 
providing
• Availability

- uninterrupted operation

• Durability

- information entered survives for 
some 1000 years

• Access control

- only authorized read/write

• Authenticity

- no publishing of forged 
documents

• Robustness against attacks

- e.g. denial of service

‣ Goals
• Massive scalability

- works with billions of clients

• Anonymity

- hard to determine producer and 
reader of a document

• Deniability

- users can deny knowledge of data

• Resistance to censorship

‣ Challenge
• coping with untrusted, unreliable, 

possibly evil peers
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Example Applications

‣ Storage server

• storing, retrieving, publishing documents

‣ E-Mail

• distributed IMAP

‣ Multimedia application

• with stream operations like append, truncate, etc.

‣ Database Application

• ACID database semantics

- i.e. atomicity, consistency, isolation, durability
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First Goal

‣ Work with untrusted infrastructure

• servers may crash without warning

• network keeps on changing

• may leak or spy on information

• only clients can be trusted with cleartext

‣ Assumption: 

• servers work correctly most of the time

• a certain class of servers can be trusted

- regarding correctness

- but may need read our data
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2nd Goal 

‣ Data 

• can be cached everywhere anytime

• can float freely

‣ Nomadic Data

• Information is separated from physical location

• complicated data coherence and location

‣ Introspective monitoring

• used to discover relationship of objects

• information is used for locality management
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System Overview

‣ Persistent object
• named by GUID (globally unique 

identifiers)

• replicated and stored on multiple 
servers

• replicas are independent from the 
server

- floating replicas

‣ Locating objects and replicas

• fast probabilistic algorithm for 
detecting nearby copies

• slower deterministic algorithm for 
robust lookup

‣ Modifying objects by updates
• every update creates a new version

• consistency is based on versioning

• cleaner recovery

• supports permanent pointers

‣ Active and archival forms of objects

• active form

- latest version

• archival form

- permanent, read-only version

- stored by erasure codes

- spread over 100s or 1000s of 
servers

- deep archival storage
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Virtualization

‣ Based on Tapestry

‣ Each peer has a GUID

• globally unique identifier

‣ Decentralized object location and routing

• Tapestry as overlay networks provides it

• Built upon TCP/IP

• Addressing by GUID inside Tapestry, not by IP-address

‣ Hosts

• publish the GUIDs of their resources

• may unpublish or leave the network at any time
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Data Model

‣ Data object
• analog of file

• ordered sequence of read-only versions

• allows „time travel“, i.e. revisiting old 
versions

• allows recovering of deleted data

‣ B-tree
• organizes blocks of a data objects

• pointers reuse old blocks
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‣ BGUID

• block GUID

• secure hash of a block of data

‣ VGUID

• version GUID

• BGUID of the root block of a version

‣ AGUID

• active GUID

• names a complete stream of versions
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Replication

‣ Primary replica
• unique first appearance of each object

• addressed by AGUID

• serializes and applies all updates to the 
object

• enforces access control restrictions

‣ Certificate
• called heartbeat

• tuple containing AGUID, VGUID of most 
recent version, sequence number

‣ Primary replicas are implemented on a 
set of servers
• Use Byzantine-fault-tolerant 

cryptographic protocol of Castro and 
Liskov
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Replication: Archival Storage

‣ Uses Erasure Codes
• a block is divided in to m fragments

• encoded into n>m fragments

- e.g. by Reed-Solomon

• r = m/n is rate of encoding

• storage cost increases by a factor of 1/r

‣ Reconstruction
• can be done from any m fragments

‣ Prototype Pond uses
• rate 1/2-code with m=16 gives 32 

fragments

• provides higher fault tolerance

‣ Each replica 
• will be erasure-coded and stored using 

Tapestry within the network
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Replication: Caching

‣ Reconstruction of erasure codes is 
expensive

‣ Blocks are cached withoud encoding

‣ If a host queries Tapestry for a block
• Tapestry checks for cached blocks

• If it does not exist, Tapestry performs 
decoding

• Then Tapestry stores the copies

- second replicas

• Blocks are stored in soft-state

- can be erased at any time

‣ Caching in Oceanstore prototype uses 
Least-Recently-Used (LRU) strategy
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The Problem of Byzantine 
Generals

‣ 3 armies prepare to attack a castle
‣ They are separated and communicate 

by messengers

‣ If one army attacks alone, it loses 
‣ If two armies attack, they win

‣ If nobody attacks the castle is 
besieged and they win

‣ One general is a renegade
• nobody knows who
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The Problem of Byzantine 
Generals

‣ The evil general X tries  
• to convince A to attack

• to convince B to wait

‣ A tells B about X‘s command
‣ B tells B about his version of X‘s 

command

• contradiction

‣ But is A, B, or X lying?

Attack!

Wait!

X

A

B
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The Problem of Byzantine 
Generals

‣ The evil general X tries  
• to convince A to attack

• to convince B to wait

‣ A tells B about X‘s command
‣ B tells B about his version of X‘s 

command

• contradiction

‣ But is A, B, or X lying?

Attack!

Wait!

X

A

B

Atta
ck

?

W
ait?
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Byzantine Agreement

‣ Theorem
• The problem of three byzantine 

generals cannot be solved (without 
cryptography)

• It can be solved for 4 generals

‣ Consider:  1 general, 3 officers 
problem
• If the general is loyal then all loyal 

officers will obey the command

• In any case distribute the received 
commans to all fellow officers

• What if the general is the renegade?

Evildoer

General A: Attack! A: Attack!

A: AttackA: don‘t care!
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Byzantine Agreement

‣ Theorem
• The problem of four byzantine 

generals can be solved (without 
cryptography)

‣ Algorithm
• General A sends his command to all 

other generals 

- A sticks to his command if he is 
honest

• All other generals forward the received 
command to all other generals

• Every generals computes the majority 
decision of the received commands 
and follows this command

Evildoer

General A: Attack!

A: Attack
B: Attack
C: Attack
D: Attack

A: Attack
B: Wait
C: Attack
D: Attack

don‘t care!

A

B

D

C
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Byzantine Agreement

‣ Theorem
• The problem of four byzantine 

generals can be solved (without 
cryptography)

‣ Algorithm
• General A sends his command to all 

other generals 

- A sticks to his command if he is 
honest

• All other generals forward the received 
command to all other generals

• Every generals computes the majority 
decision of the received commands 
and follows this command

‣
Evildoer

A: Wait
B: Wait
C: Wait
D: Attack

A: Attack
B: Wait
C: Wait
D: Attack

General A: Confuse!

A: Wait
B: Wait
C: Wait
D: Attack

A

B C

D
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General Solution of Byzantine 
Agreement

‣ Theorem

• If m generals are traitors then 2m+1 generals must be honest to get 
a Byzantine Agreement

‣ This bound is sharp if one does not rely on cryptography

‣ Theorem

• If a digital signature scheme is working, then an arbitrarily large 
number of betraying generals can be dealt with

‣ Solution

• Every general signs his command

• All commands are shared together with the signature

• Inconsistent commands can be detected

• The evildoer can be exposed
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Update Model

‣ Updates are applied atomically

• represented as an array of potential actions and 
predicates

‣ Example actions

• replacing a set of bytes in the objects

• appending new data to the end of the object

• truncating the object

• checking latest version of the object
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Introspection

‣ Cycle of

• Observation

• Optimization

• Computation

‣ Uses

• Cluster recognition

• Replica management

• Performance of routing structure, availability and 

durability of archival fragments, recognition of 
unreliably peers
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Summary

‣ Prototype of Oceanstore has been recently released

• Pond (presented 2003)

‣ Plus

• Oceanstore provides more file system like structures

• Efficient routing and caching

• Consistent updates

• Space efficient archival system

• Access control

‣ Contra

• complex design
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