Informatik III

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer **Arne Vater**

Wintersemester 2006/07

10. Vorlesung

24.11.2006

Turingmaschinen

Turingmaschinen

- ➤ Eine (deterministische 1-Band) Turingmaschine (DTM) wird beschrieben durch ein 7-Tupel
 - $-M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}).$
- \triangleright Dabei sind Q, Σ , Γ endliche, nichtleere Mengen und es gilt:
 - $F \subseteq Q, \Sigma \subseteq \Gamma, q_0 \in Q$
 - $_$ ∈ Γ ∩ Σ ist das *Blank*symbol.
- > Q ist die Zustandsmenge
- > Σ ist das Eingabealphabet
- $\succ \Gamma$ das *Bandalphabet*.
- > Zustände
 - $-q_0 \in Q$ ist der Startzustand.
 - − q_{accept} ∈ Q ist der akzeptierende Endzustand
 - $-q_{reject} \in Q$ ist der ablehnende Endzustand
- \triangleright δ : $\mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\ ist die (partielle) Übergangsfunktion$
 - ist nicht definiert für $q \in \{q_{accept}, q_{reject}\} \subseteq \Gamma$ definiert

Arbeitsweise einer Turingmaschine

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Initial:

- Eingabe steht links auf dem Band
- Der Rest des Bands ist leer
- Kopf befindet sich ganz links
- > Berechnungen finden entsprechend der Übergangsfunktion statt
- ➤ Wenn der Kopf sich am linken Ende befindet und nach links bewegen soll, bleibt er an seiner Position
- ➤ Wenn q_{accept} oder q_{reject} erreicht wird, ist die Bearbeitung beendet

Konfiguration

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Momentaufnahme einer TM

- Bei Bandinschrift uv
 - dabei beginnt u am linken Rand des Bandes und hinter v stehen nur Blanks
- Zustand q,
- Kopf auf erstem Zeichen von v

≻ Konfiguration C = uqv

Aufeinanderfolgende Konfigurationen

- Gegeben: Konfigurationen C₁, C₂
- Wir sagen:
 - Konfiguration C₁ führt zu C₂, falls die TM von C₁ in einem Schritt zu C₂ übergehen kann.
- > Formal:
 - Seien a, b, c $\in \Gamma$, u, v $\in \Gamma^*$ und Zustände q_i , q_i gegeben
- Wir sagen
 - uaqibv führt zu uqiacv,
 - falls $\delta(q_i,b) = (q_i,c,L)$ und
 - uaqibv führt zu uacqiv,
 - falls $\delta(q_i,b) = (q_i,c,R)$

Konfigurationen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Startkonfiguration:

- q₀w, wobei w die Eingabe ist

≻Akzeptierende Konfiguration:

Konfigurationen mit Zustand q_{accept}

≻Ablehnende Konfiguration:

- Konfigurationen mit Zustand q_{reject}

> Haltende Konfiguration:

- akzeptierende oder ablehnende Konfigurationen

Akzeptanz von Turingmaschinen

- Eine Turingmaschine M akzeptiert eine Eingabe w, falls es eine Folge von Konfigurationen $C_1, C_2, ..., C_k$ gibt, so dass
 - C₁ ist die Startkonfiguration von M bei Eingabe w
 - C_i führt zu C_{i+1}
 - C_k ist eine akzeptierende Konfiguration
- ➤ Die von M akzeptierten Worte bilden die von M akzeptierte Sprache L(M)
- ➤ Eine Turingmaschine *entscheidet* eine Sprache, wenn jede Eingabe in einer haltende Konfiguration C_k resultiert

Rekursive und rekursiv aufzählbare Sprachen

- ➤ Eine Sprache L heißt rekursiv aufzählbar, falls es eine Turingmaschine M gibt, die L akzeptiert
- ➤ Eine Sprache L heißt *rekursiv* oder *entscheidbar*, falls es eine Turingmaschine M gibt, die L entscheidet

Mehrband Turingmaschinen

- ➤ Eine *Mehrband* oder *k-Band Turingmaschine* (k-Band DTM) hat *k* Bänder mit je einem Kopf.
- ➤ Die Übergangsfunktion ist dann von der Form

$$-\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

- ➤ Die Arbeitsweise ist analog zu 1-Band-DTMs definiert.
 - Zu Beginn steht die Eingabe auf Band 1,
 - sonst stehen überall Blanks.

Äquivalenz von 1-Band und Mehrband Turingmaschinen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Satz:

 Zu jeder Mehrband Turingmaschine gibt es eine äquivalente 1-Band Turingmaschine

>Korollar:

 Eine Sprache L ist genau dann rekursiv aufzählbar, wenn es eine Mehrband-Turingmaschine gibt, die L akzeptiert

Warum rekursiv aufzählbar rekursiv aufzählbar heißt

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Definition

- Eine aufzählende Turing-Maschine ist eine Turingmaschine, die mit einem zusätzlichen speziellen Ausgabe-Band ausgestattet ist.
 - Die Turing-Maschine muss nicht unbedingt halten.
 - Auf dem Ausgabeband kann die Turingmaschine nur nach rechts gehen.
 - Wörter sind durch das Sondersymbol "_" von einander getrennt und können damit weder gelöscht noch überschrieben werden.
 - Die Vereinigung aller jemals erzeugten Wörter, beschreibt die Sprache der aufzählenden Turing-Maschine.

> Theorem

 Eine Sprache ist rekursiv aufzählbar genau dann wenn eine aufzählende Turing-Maschine sie beschreibt.

Beweis des Theorems

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Theorem

 Eine Sprache ist rekursiv aufzählbar genau dann wenn eine aufzählende Turing-Maschine sie beschreibt.

➤ Beweis (⇐)

- Sei U eine Aufzähler-TM für die Sprache A
- Wir konstruieren eine Akzeptor-TM K wie folgt
- K = "Auf Eingabe w:
 - 1. Simuliere U.
 - 2. Jedes Mal, wenn U eine Ausgabe macht, vergleiche sie mit w
 - 3. Falls w erscheint, akzeptiere"

➤ Beweis (⇒)

- Sei K eine Akzeptor-TM
- Sei s₁,s₂,.. eine einfach erzeugbare Folge aller Zeichenketten
 - z.B. längenlexikographisch: ε,0,1,00,01,10,11,000,001,...
- Wir konstruieren eine Aufzähler-TM U wie folgt:
- U = "
 - 1. Für i =1,2, ..
 - 2. Für jedes w aus $\{s_1, s_2, ..., s_i\}$
 - 3. Falls K auf Eingabe w in i Schritten hält und akzeptiert, gib w aus."
- Falls K eine Eingabe w in endlicher Zeit akzeptiert, wird sie ausgegeben
 - sogar beliebig häufig
- Andere Ausgaben werden von U nicht erzeugt.

Rekursiv aufzählbar beinhaltet rekursiv entscheidbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Korollar

- Jede rekursiv entscheidbare Menge ist rekursiv aufzählbar

> Beweis:

- Betrachte die DTM, die eine rekursiv entscheidbare Menge M entscheidet
- Diese DTM ist bereits ein Maschine, die M akzeptiert
 - Da die aufzählbare Mengen über die Akzeptor-TM definiert ist

Der Maschinenpark der Turingmaschinen

- > Keller-Automaten (PDA)
 - NFA + Keller
- ➤ 1-Band-Turing-Maschinen (TM, DTM)
 - DFA + Band
- ➤ Mehr-Band-Turing-Maschinen (k-Tape-TM)
 - DFA + Band + Band + Band
- ➤ Nichtdeterministische Turing-Maschine (NTM)
 - NFA + Band

Die Church-Turing-These

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Church-Turing-These

Was heißt entscheidbar?

- > Genau dann wenn eine
 - 1-Band-TM
 - 2-Band-TM
 - 3-Band-TM
 - **—** ..
 - k-Band-TM
 - NTM
- Für jedes Wort einer Sprache in endlicher Zeit ausgibt, ob es in L ist oder nicht, dann ist die Sprache entscheidbar.
- ➤ Gilt auch für ein Programm in
 - Java
 - C
 - C++
 - Pascal
 - Fortran

Hilberts 10. Problem

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Rede auf dem internationalen Mathematiker-Kongreß, Paris 1900

- mit 23 (seiner Zeit aktuellen Problemen)

> das 10. Problem

 Eine Diophantische Gleichung mit irgend welchen Unbekannten und mit ganzen rationalen Zahlencoefficienten sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen Anzahl von Operationen entscheiden löst, ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

Frage beantwortet durch

- Yuri Matiyasevich 1970
- nach Vorarbeiten von Martin Davis und Julia Robinson

Diophantisches Polynom

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Beispielprobleme

- Gibt es x,y aus den ganzen Zahlen **Z**, so dass
 - x + y 3 = 0 gilt?
- Gibt es x,y,z aus **Z** so dass gilt:

$$6x^3yz^2 + 3y^2 - x^3 - 10 = 0$$

≻Lösung des 10. Hilbertschen Problem:

- Geht nicht!
- Soll heißen: es gibt kein algorithmisches Verfahren, dass dieses Problem lösen kann.

➤ Liegt das aber vielleicht an unserem eingeschränkten Begriff der Verfahren?

Gibt es m\u00e4chtigere Programmiersprachen als die der Turing-Maschine,
 Java, C++, ...

>Antwort:

-?

Die Church-Turing-These

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- ➤ Nachdem man eine Reihe von verschiedenen diskreten Berechnungsmodellen als gleichwertig bewiesen hat, hat die Fachwelt die folgende These als allgemeingültig angesehen:
 - Lambda-Kalkül von Alonzo Church (1936)
 - Turing-Maschine von Alan Turing (1936)

> Church-Turing-These

- Der intuitive Begriff eines Algorithmus wird vollständig beschrieben durch die Algorithmen, welche Turing-Maschinen beschreiben können.
- ➤ Tatsächlich sind alle Maschinen, die bisher von Menschenhand gebaut wurden, durch eine Turing-Maschine beschreibbar.
- ➤ Hoffnung für Gegenbeispiele:
 - Analog-Computer
 - Quanten-Computer
 - Computer, die man in schwarze Löcher wirft.

Hilberts 10. Problem ist nicht entscheidbar, aber rekursiv aufzählbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem

 Die Menge der diophantischen Gleichungen mit ganzzahligen Lösungen ist rekursiv aufzählbar.

> Beweis: folgt gleich

>Theorem

Hilberts 10. Problem ist nicht rekursiv entscheidbar.

> Beweis

- sprengt den Rahmen dieser Vorlesung

Hilberts 10. Problem ist rekursiv aufzählbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem

 Die Menge der diophantische Gleichungen mit ganzzahligen Lösungen ist rekursiv aufzählbar.

> Beweis

- Wir konstruieren eine Akzeptor-TM M
- Gegeben eine diophantische Gleichung $G(x_1,x_2,...,x_m)$ mit den Variablen $x_1,x_2,...,x_m$
- M = "Für b = 1,2,3,... Für alle $x_1,x_2,...,x_m \in \{-b,-b+1,...,-1,0,1,2,...,b\}$ Falls $G(x_1,x_2,...,x_m) = 0$ akzeptiere"
- Beweis der Korrektheit:
 - Falls für $y_1, y_2, ..., y_m$: $G(y_1, y_2, ..., y_m) = 0$
 - Dann wird für b= max{| y₁ |, | y₂ |,..., | y_m |} die Kombination y₁,y₂,...,y_m in x₁,x₂,...,x_m eingesetzt
 - Falls für alle $x_1, x_2, ..., x_m$: $G(x_1, x_2, ..., x_m) \neq 0$,
 - akzeptiert M niemals.

Entscheidbare Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Reguläre Sprachen

- Wortproblem
- Leerheitsproblem
- Äquivalenzproblem

> Kontextfreie Sprachen

- Wortproblem
- Leerheitsproblem
- Äquivalenzproblem

≻ Das Halteproblem

- Diagonalisierung
- Das Halteproblem ist nicht entscheidbar
- Eine nicht rekursiv aufzählbare Sprache

Entscheidbare Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Entscheidbare reguläre Sprachprobleme

Entscheidbare Reguläre Sprachprobleme

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- ➤ Das Wortproblem regulärer Sprachen
 - Gegeben:
 - Ein DFA B
 - ein Wort w
 - Gesucht:
 - Akzeptiert B das Wort w?
- > Beschrieben durch die Sprache:

 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ ist ein DFA der eine Eingabe } x \text{ akzeptiert} \}$

- DFA ist geeignet kodiert
- Klammern stehen für eine geeignete Tupelkodierung
- ➤ Das Problem einer Sprache L wird beschrieben durch die charakteristische Funktion der Sprache L

$$\chi_{\mathsf{L}}(\mathsf{w}) = \left\{ egin{array}{ll} 1 \;, & w \in L \ 0 \;, & w
otin L \end{array}
ight.$$

Das Wortproblem regulärer Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

Das Wortproblem der regulären Sprachen ist entscheidbar.

 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ ist ein DFA der eine Eingabe } x \text{ akzeptiert} \}$

Beweis

- Konstruiere eine Turing-Masche M, die folgendes berechnet:
- M = "Für Eingabe <B,w> mit DFA B und Wort w:
 - 1. Simuliere B auf Eingabe w
 - 2. Falls die Simulation akzeptiert, dann akzeptiere Sonst verwerfe"
- Implementationsdetails:
 - Übergangsfunktion ist geeignet kodiert auf einem Band
 - Zustand ist auf einem separaten Band
 - Eingabe auf einem dritten Band
 - Suche n\u00e4chsten \u00dcbergang in der Kodierung des DFAs

Das Leerheitsproblem regulärer Sprachen

- > Das Leerheitsproblem regulärer Sprachen:
 - Gegeben:
 - Ein DFA A
 - Entscheide:
 - Ist L(A) = ∅
- > Die zugehörige Sprache wird beschreiben durch:

$$\mathsf{E}_{\mathrm{DFA}} = \{ \langle \mathsf{A} \rangle \mid A \text{ ist ein DFA und } L(A) = \emptyset \ \}$$

- > Theorem
 - Das Leerheitsproblem regulärer Sprachen ist entscheidbar

Das Leerheitsproblem regulärer Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

Das Leerheitsproblem regulärer Sprachen ist entscheidbar.

$$\mathsf{E}_{\mathrm{DFA}} = \{ \langle \mathsf{A} \rangle \mid A \text{ ist ein DFA und } L(A) = \emptyset \}$$

Beweis

- Ein DFA akzeptiert mindestens ein Wort, wenn der DFA mindestens einen vom Startzustand erreichbaren Zustand besitzt
- T = "Auf Eingabe A, wobei A ein DFA ist
 - 1. Markiere Startzustand A
 - 2. Wiederhole
 - 3. Markiere jeden Folgezustand eines markierten Zustands
 - 4. bis kein neuer Folgezustand in A markiert wurde
 - 5. Falls kein akzeptierender Zustand markiert wurde: Akzeptiere sonst: verwerfe"

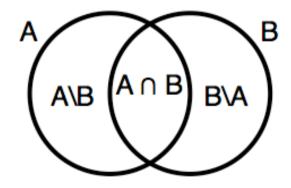
Das Äquivalenzproblem regulärer Sprachen

- > Das Äquivalenzproblem regulärer Sprachen:
 - Gegeben:
 - Zwei DFAs A, B
 - Entscheide:
 - Ist L(A) = L(B)
- ➤ Die zugehörige Sprache wird beschrieben durch:

$$\mathsf{EQ}_{\mathrm{DFA}} = \{ \langle \mathsf{A}, \mathsf{B} \rangle \mid A, B \text{ sind DFAs und } L(A) = L(B) \}$$

- > Theorem
 - Das Äquivalenzproblem regulärer Sprachen ist entscheidbar
- ➤ Beobachtung für zwei Mengen A,B:

$$A = B \Leftrightarrow (A \setminus B) \cup (B \setminus A) = \emptyset$$



Das Äquivalenzproblem regulärer Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem

- Das Äquivalenzproblem regulärer Sprachen ist entscheidbar

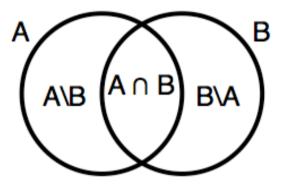
$$EQ_{DFA} = \{ \langle A, B \rangle \mid A, B \text{ sind DFAs und } L(A) = L(B) \}$$

➤ Beobachtung für zwei Mengen A,B:

$$A = B \Leftrightarrow (A \setminus B) \cup (B \setminus A) = \emptyset$$

- > Beweis:
 - Konstruiere DFA X für die Sprache (A \ B) ∪ (B \ A)
 - Durch Mehrfachanwendung des kartesischen Produkts

mit Hilfe der Turing-Maschine für das Leerheitsproblem



Entscheidbare Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

(Un-)Entscheidbare kontextfreie Sprachprobleme

Das Wortproblem der kontextfreien Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Wortproblem der kontextfreien Sprachen:

- Gegeben:
 - Kontextfreie Grammatik G in geeigneter Kodierung
 - Wort w
- Gesucht:
 - Ist $w \in L(G)$?

>Theorem

Das Wortproblem der kontextfreien Sprachen ist entscheidbar.

> Beweis

- Wandle Grammatik in Chomsky-Normalform um
- Führe Cocke-Younger-Kasami-Algorithmus für eine gegebene kontextfreie
 Grammatik und ein gegebenes Wort durch
- Akzeptiere falls das Wort vom Startsymbol abgeleitet werden kann, ansonsten verwerfe.

Beispiel

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Ist "baaba" in L(G)?

$$G = (V, \Sigma, S, P), \text{ wobei } V = \{S, A, B, C\} \text{ und } \Sigma = \{a, b\}.$$

$$P = \{S \rightarrow AB, S \rightarrow BC,$$

$$A \rightarrow BA$$

$$B \rightarrow CC,$$

$$C \rightarrow AB,$$

$$A \rightarrow a, B \rightarrow b, C \rightarrow a\}$$

$$|= 5 \mid \{S,A,C\}|$$

- Dann akzeptiere
- Sonst lehne ab

= 4	{}	{S,A,C}	}		
= 3	{}	{B}	{B}		
= 2	{S,A}	{B}	{S,C}	{S,A}	

Das Leerheitsproblem der kontextfreien Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Das Leerheitsproblem kontextfreier Sprachen:

- Gegeben:
 - Eine kontextfreie Grammatik G
- Entscheide:
 - Ist L(G) = ∅

> Theorem

- Das Leerheitsproblem kontextfreier Sprachen ist entscheidbar.

> Beweis

- Wandle G in Chomsky-Normalform um
- Markiere alle Terminalsymbole
- Solange neue Markierungen erscheinen
 - Markiere alle Nichtterminale, die Regeln besitzen deren rechte Seite vollständig markiert ist
- Falls das Startsymbol markiert ist, verwerfe
- Ansonsten akzeptiere

Beispiel

```
G = (V, \Sigma, S, P), \text{ wobei } V = \{S, A, B, C\} \text{ und } \Sigma = \{a, b\}.
P = \{S \rightarrow AB, S \rightarrow BC,
A \rightarrow BA
B \rightarrow CC,
C \rightarrow AB,
A \rightarrow a, B \rightarrow b, C \rightarrow a\}
```


Das Äquivalenzproblem der kontextfreien Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Das Äquivalenzproblem kontextfreier Sprachen:

- Gegeben:
 - Kontextfreie Grammatiken G,G'
- Entscheide:
 - Ist L(G) = L(G')

> Problem:

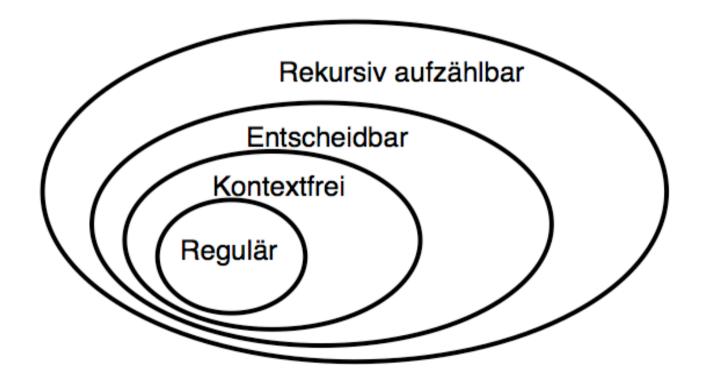
- Kontextfreie Sprachen sind nicht abgeschlossen
 - unter Komplement
 - unter Schnittoperationen
- Beweis des Äquivalenzproblem der kontextfreien Sprachen ist nicht übertragbar

> Theorem

- Das Äquivalenzproblem kontextfreier Sprachen ist nicht entscheidbar.
- (ohne Beweis)

Beziehungen zwischen den Sprachen

- >Jede reguläre Sprache ist eine kontextfreie Sprache.
- >Jede kontextfreie Sprache ist eine entscheidbare Sprache.
 - -folgt aus der Entscheidbarkeit des Wortproblems der kontextfreien Sprachen.
- >Jede entscheidbare Sprache ist eine rekursiv aufzählbare Sprache.



Ende der 10. Vorlesung

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Arne Vater 24.11.2006