Informatik III

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer **Arne Vater**

Wintersemester 2006/07

12. Vorlesung

01.12.2006

Was heißt abzählbar im Gegensatz zu rekursiv aufzählbar?

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻ Definition

- Eine Menge M heißt abzählbar, wenn es eine (nicht unbedingt berechenbare) Funktion f:N → M gibt,
 - so dass für jedes $m \in M$ eine natürliche Zahl $i \in N$ gibt mit f(i) = m.

> Lemma

- Jede rekursiv aufzählbare Menge ist abzählbar
- Jede Teilmenge einer abzählbaren Menge ist abzählbar

Hilberts Hotel

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- > Hilberts Hotel hat unendlich viele Zimmer
- > Alle Zimmer sind ausgebucht
 - Es sind also schon unendlich viele Gäste da!
- > Kann der Hotelier dennoch weitere Gäste aufnehmen?
 - Ein neuer Gast
 - Ein Bus mit unendlich vielen neuen Gästen
 - Unendlich viele Busse mit unendlich vielen neuen Gästen

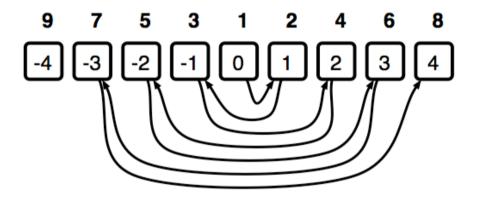
Die ganzen Zahlen sind abzählbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

 Die Menge der ganzen Zahlen ist abzählbar

- Konstruiere eine Abzählung aller ganzen Zahlen:
- 0 erhält die Nummer 1
- alle positiven Zahlen x erhalten die Nummer 2x
- alle negativen Zahlen x erhalten die Nummer 2(-x)+1



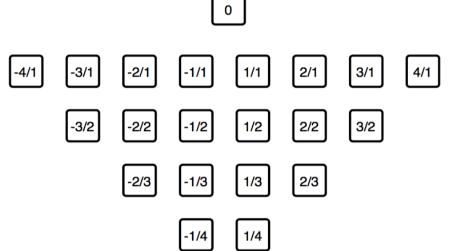
Die rationalen Zahlen sind abzählbar

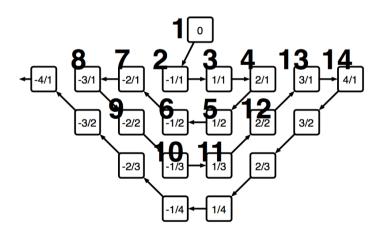
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Theorem

 –Die Menge der rationalen Zahlen ist abzählbar

- Die rationalen Zahlen sind definiert als Tupel aus einer ganzen Zahl und einer natürlichen Zahl
- -Zähle alle diese Paare geeignet auf
 - Mehrfachaufzählungen sind irrevelant (=egal)





Die reellen Zahlen sind nicht abzählbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

Die Menge der reellen Zahlen sind nicht abzählbar

> Beweis

- Betrachte alle reellen Zahlen aus [0,1[in der Dezimaldarstellung
- Angenommen alle reellen Zahlen sind abzählbar mit x₁,x₂,x₃,...
- Betrachte reelle Zahl z, wobei
 - j-te Ziffer ist 1, falls j-te Ziffer von x_j gerade ist
 - j-te Ziffer ist 2, falls j-te Ziffer von x_j ungerade ist
- Diese Zahl hat auch einen Index i,
 - d.h. es gib ein i mit x_i=z
 - wenn die Annahme stimmt
- Ist die i-te Ziffer von x_i jetzt gerade oder ungerade
 - weder noch: Widerspruch
- Also ist die Annahme falsch

$x_2 = 0$,	1 9 6 3	9 4 2	9 2	9 5	5 9 2		1	
$x_2 = 0,$	ô							
$x_2 = 0,$ $x_3 = 0,$		4	2	5	2			
x ₃ = 0,	3	2						
		ΙΓ	7	3	2			
$x_3 = 0,$ $x_4 = 0,$ $x_5 = 0,$	ŝ	7	2	1	6			
x ₅ = 0,	2	1	7	2	8			
	Г					9		
		-	-		-			
x _i =0,	2	1	2	2	1		?	Ţ
							\sqcap	

i-te Ziffer von x_i ist 2, falls i-te Ziffer von x_i ungerade ist 1, falls i-te Ziffer von x_i gerade

Diagonalisierung

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Definition

- Eine Menge M heißt abzählbar, wenn es eine (nicht unbedingt berechenbare) Funktion f:N → M gibt,
 - so dass für jedes m ∈ M eine natürliche Zahl i ∈ N gibt mit f(i) = m.

> Theorem

 Die Menge aller Funktionen die von
 N auf {0,1} abbilden, ist nicht abzählbar.

- Angenommen es gibt eine Funktion die alle Funktionen f₁,f₂,... abzählt.
- Betrachte die Funktion 1-f_i(i).
- Diese Funktion ist nicht in $f_1, f_2,...,$ da für jedes i gilt $f_i(i) \neq 1-f_i(i)$.
- Diese Funktion ist also in der Abzählung f₁,f₂,... nicht enthalten (sollte aber).

	1	2	3	4	_			
		2	3	4	5		İ	
f ₁ (n)	0	0	0	0	0			
f ₂ (n)	1	1	1	1	1			
f ₃ (n)	þ	1	0	1	0			
	1	þ	1	0	1			
f ₄ (n)	þ	1	1	þ	1			
	-					:		
$f_i(n)=1-f_n(n)$	7	0	7	7	0		?	

Das TM-Wortproblem

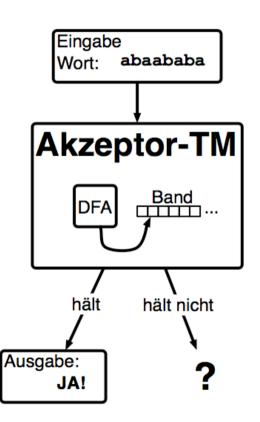
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Definition

- Das Wortproblem der Turing-Maschinen ist definiert als
- gegeben:
 - eine Turingmaschine M
 - ein Wort w
- gesucht:
 - akzeptiert M das Wort w?
- ➤ Die alternative Darstellung als Sprache ist:

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ ist eine TM und } M \text{ akzeptiert } w \}$

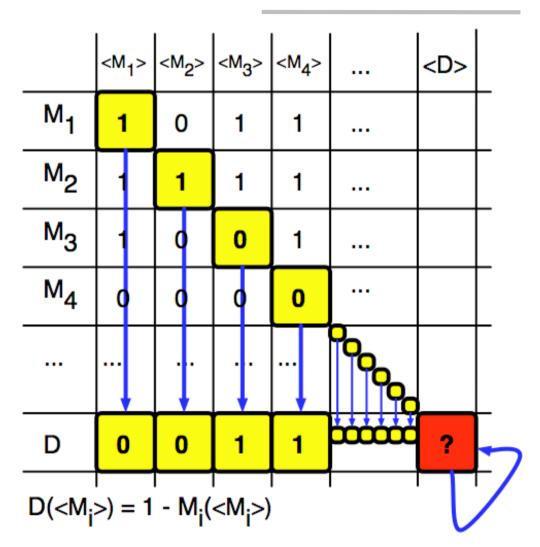
 hierbei ist <M,w> eine geeignete Kodierung der TM M und des Wortes w



Dial D for Diagonalization!

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- Angenommen: Das TM-Wortproblem ist berechenbar
- > Dann kann D existieren!
- Das führt zu einem Widerspruch!



$$D() = 1 - D()?$$

Rekursiv = Aufzählbar + Ko Aufzählbar

> Definition

 Eine Sprache ist rekursiv ko-aufzählbar, wenn das Komplement der Menge rekursiv aufzählbar ist.

> Theorem

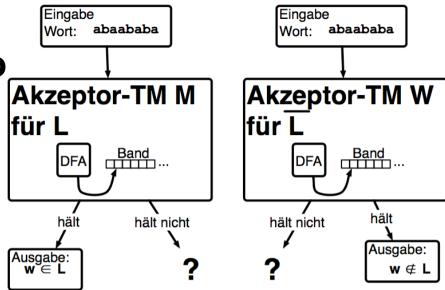
- Eine Sprache L ist rekursiv, genau dann
 - wenn sie rekursiv aufzählbar
 - und rekursiv ko-aufzählbar ist.

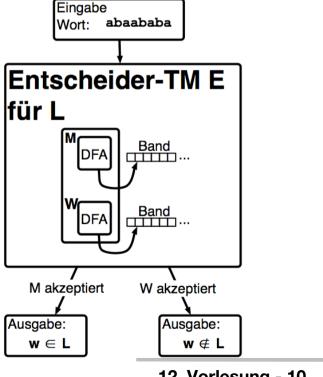
> Beweis (Rückrichtung)

- Betrachte Akzeptor-TM M für L
- und Akzeptor-TM W für $\Sigma^* \setminus L$
- Konstruiere TM E für Eingabe x
 - Berechne parallel M(x) und W(x)
- Falls M(x) zuerst akzeptiert:
 - akzeptiere
- Falls W(x) zuerst akzeptiert:
 - halte und verwerfe

> Beweis (Hinrichtung):

- Jede entscheidbare Sprache ist aufzählbar
- Das Komplement einer entscheidbaren Sprache ist wiederum entscheidbar:
 - Vertausche akzeptierenden und ablehnenden Zustand





Die Simulator-TM

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Lemma

- Es gibt eine TM, die einen Schritt einer gegebenen TM M und einer Konfiguration berechnen kann,
 - d.h. die Nachfolgekonfiguration ausgeben

- S verfügt über
 - ein Band für Kodierung der 1-Band-TM M
 - ein Band für den aktuellen Zustand
 - ein Band für den Bandinhalt von M mit markierter Kopfposition
 - ein Band für eigene Berechnungen (Zählen)
- S sucht nach der aktuellen Kopfposition
- S sucht in der Kodierung von M nach Übergang
- S schreibt Buchstaben auf das "Band"-Band
- S bewegt die Kopfposition und markiert entsprechendes Zeichen auf dem Band
- S schreibt Folgezustand

Das TM-Wortproblem ist rekursiv aufzählbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem

− Die Sprache A_{TM} ist rekursiv aufzählbar.

> Beweis

- Betrachte folgende TM A:
- A = "Für gegebene TM M und Eingabe x
 - Kodiere Anfangskonfiguration f
 ür M und x f
 ür Simulator S
 - Solange kein akzeptierende Endkonfiguration
 - S simuliert einen Schritt von M
 - Falls akzeptierende Endkonfiguration erreicht wird, halte und akzeptiere"

> Beobachtung:

A akzeptiert genau dann, wenn M die Eingabe x akzeptiert

Eine nicht rekursiv aufzählbare Sprache

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem:

 Das Komplement der Sprache A_{TM} des TM-Wortproblems ist nicht rekursiv aufzählbar

- Angenommen doch.
- Dann ist A_{TM} rekursiv aufzählbar und rekursiv ko-aufzählbar
- dann ist A_{TM} rekursiv (also entscheidbar).
- Widerspruch!

Das Halteproblem

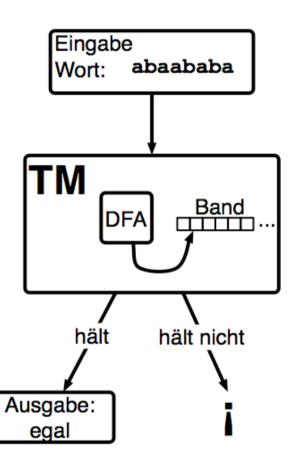
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Definition

- Das Halteproblem der Turing-Maschinen ist definiert als
- Gegeben:
 - eine Turingmaschine M
 - ein Wort w
- Gesucht:
 - hält die Turingmaschine auf Eingabe w?
- ➤ Die alternative Darstellung als Sprache ist:

 $\mathsf{HALT}_{\mathsf{TM}} = \{ \langle \mathsf{M}, \mathsf{w} \rangle \mid M \text{ ist eine TM und hält auf Eingabe } w \}$

hierbei ist <M,w> eine geeignete
 Kodierung der TM M und des Wortes w



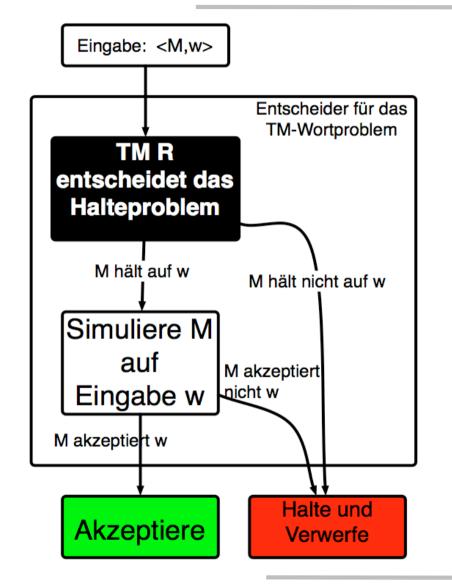
Das Halteproblem ist nicht entscheidbar

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Theorem

- HALT_{TM} ist nicht entscheidbar.

- Angenommen, es gibt eine TM R die HALT_{TM} entscheidet.
- Konstruiere nun TM S wie folgt:
- S = "Auf Eingabe <M,w>, Kodierung einer TM und Zeichenkette w
 - Lasse R auf <M,w> laufen
 - Falls R verwirft, verwirft S
 - Falls R akzeptiert,
 - simuliere M auf Eingabe w bis M hält
 - Falls M akzeptiert, dann akzeptiert S
 - Falls M verwirft, dann verwirft S"
- S entscheidet das (unentscheidbare) TM-Wortproblem
- Widerspruch ⇒ Annahme ist falsch.



Kann man entscheiden, ob eine TM überhaupt etwas akzeptiert?

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻ Das Leerheitsproblem:

- Gegeben
 - eine TM M
- Gesucht:
 - Akzeptiert M kein einziges Wort?
- **➤ Darstellung als Sprache:**

$$\mathsf{E}_\mathsf{TM} = \{ \langle \mathsf{M} \rangle \mid M \text{ ist eine TM und } L(M) = \emptyset \}$$

>Theorem

– E_{TM} ist nicht entscheidbar

Beweis für die Unentscheidbarkeit des TM-Leerheitsproblems

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

- E_{TM} ist nicht entscheidbar

 $\mathsf{E}_\mathsf{TM} = \{ \langle \mathsf{M} \rangle \mid M \text{ ist eine TM und } L(M) = \emptyset \}$

> Beweis

- Für gegebene TM M und ein gegebenes Wort w kann man eine TM A_{M,w} bauen mit folgender Funktionalität
- $-A_{M.w}$ = "Auf Eingabe x:
 - Falls x≠w, verwerfe
 - Falls x=w, simuliere M auf Eingabe w
 - akzeptiere falls M das Wort w akzeptiert"

➤ Angenommen TM R entscheidet die Sprache E_{TM}

- ➤ Betrachte nun TM S:
- ➤ S = "Auf Eingabe <M,w> (= Kodierung einer TM und Zeichenkette w)
 - Berechne die Beschreibung der TM A_{M.w}
 - Simuliere R auf Eingabe <A_{M.w}>,
 - Falls R akzeptiert, verwirft S
 - Falls R verwirft, akzeptiert S"
- ➤ S akzeptiert w gdw. R die Eingabe <A_{M w}> verwirft
- ➤ R verwirft gdw. wenn A_{M,w} mindestens ein Wort akzeptiert
- ➤ A_{M,w} akzeptiert gdw. wenn M(w) akzeptiert.
- ➤ Also: S entscheidet das (unentscheidbare) TM-Wortproblem
- ➤ Widerspruch ⇒ Annahme ist falsch

Entscheidbare und unentscheidbare Sprachen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Reguläre Sprachen

Wortproblem ist entscheidbar

Leerheitsproblem ist entscheidbar

– Äquivalenzproblem ist entscheidbar

➤ Kontextfreie Sprachen

Wortproblem ist entscheidbar

Leerheitsproblem ist entscheidbar

Äquivalenzproblem ist nicht entscheidbar

≻ Das Halteproblem

- Diagonalisierung

Wortproblem der TM ist nicht entscheidbar

- Eine nicht rekursiv aufzählbare Sprache

Halteproblem ist nicht entscheidbar

Leerheitsproblem der TM ist nicht entscheidbar

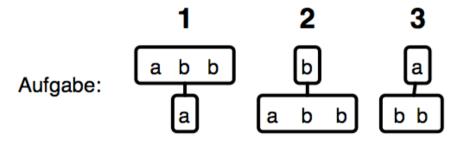
Ein einfaches unentscheidbares Problem

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Das Postsche Korrespondenzproblem

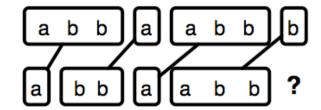
- Gegeben
 - die Worte $x_1, x_2, ..., x_n$ und
 - die Worte y₁,y₂,..,y_n
- Gesucht
 - Gibt es eine Folge von Indizes
 i₁,i₂,...,i_m mit m ≥ 1
 - so dass:

$$x_{i_1}x_{i_2}\dots x_{i_m}=y_{i_1}y_{i_2}\dots y_{i_m}$$



> Theorem

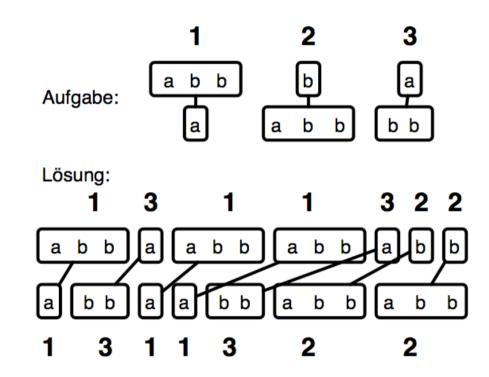
 Das Postsche Korrespondenzproblem ist nicht entscheidbar. 1. Versuch:



Eine Lösung und eine Anregung

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- ➤ Der Beweis der Nichtentscheidbarkeit des Postschen Korrespondenz-Problem kann in Sipsers Buch "Introduction to the Theory of Computation" nachgelesen werden
 - sehr empfehlenswert



Berechenbare Funktionen

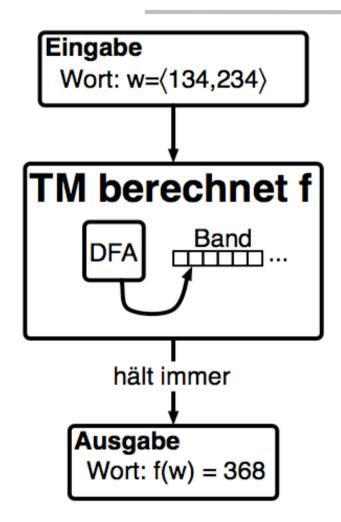
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Definition

 Eine Funktion f: Σ*→Σ* ist berechenbar, falls eine Turing-Maschine für jede Eingabe w mit dem Ergebnis f(w) auf dem Band hält.

> Beispiele für berechenbare Funktionen:

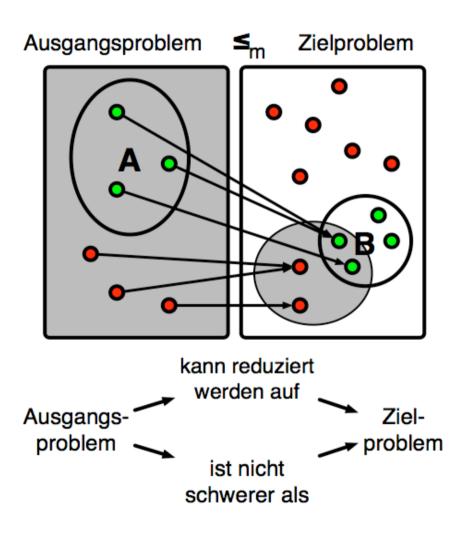
- Addition, Division, Multiplikation, Vergleich, Sortieren, Division, ...
- Automatische Generierung von Kodierungen für bestimmte Turingmaschinen
- Modifizierung der Kodierung einer TM:
 - Kartesisches Produkt
 - Invertierung von Zuständen
 - Initialisierung der Eingabe
 - Verknüpfung mehrerer kodierter TMs



Abbildungsreduktion

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- ➤ Definition (Abbildungsreduktion, Mapping Reduction, Many-one)
 - Eine Sprache A kann durch
 Abbildung auf eine Sprache B
 reduziert werden: A ≤_m B,
 - falls es eine berechenbare Funktion f: $\Sigma^* \rightarrow \Sigma^*$ gibt,
 - so dass für alle w: $w \in A \Leftrightarrow f(w) \in B$
 - Die Funktion f heißt die Reduktion von A auf B.



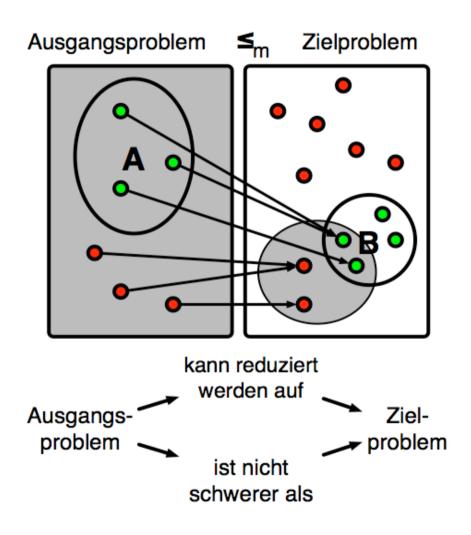
Der Nutzen der Reduktionen

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

 Falls A ≤_m B und B ist entscheidbar, dann ist A entscheidbar.

- Sei M, eine Turing-Maschine, die B entscheidet.
- Betrachte die Entscheider-TM:
- N = "Auf Eingabe w:
 - Berechne f(w)
 - Führe die Berechnung von M auf Eingabe f(w) durch
 - N gibt aus, was M ausgibt"
- Falls $f(w) \in B$,
 - dann akzeptiert M
 - dann ist auch $w \in A$
- Falls f(w) ∉B,
 - dann akzeptiert M nicht
 - dann ist auch w ∉A



Der Nutzen der Reduktionen

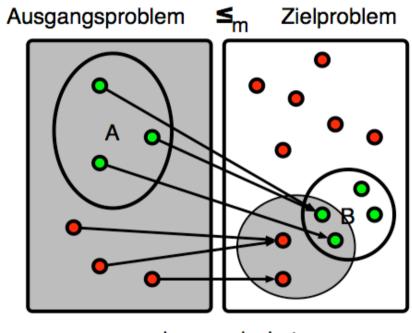
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Korollar

 Falls A ≤_m B und A ist nicht entscheidbar, dann ist B auch nicht entscheidbar.

> Folgt aus:

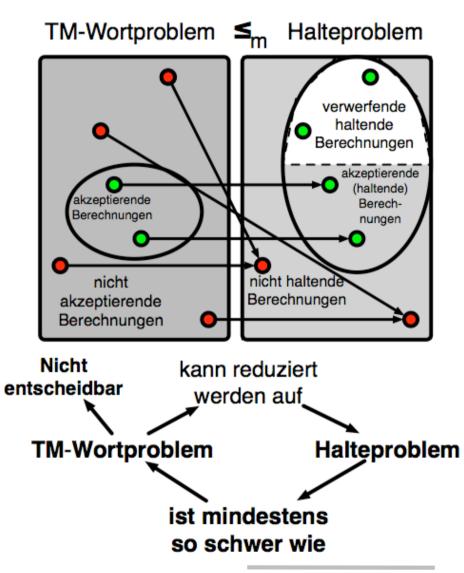
- X ∧ Y ⇒ Z und X ∧ ¬Y ⇒ ¬Z sind äquivalent
- Dieses Korollar ist unser Hauptwerkzeug für den Beweis der Nichtberechenbarkeit



Ein alternativer Beweis für die Nichtberechenbarkeit des Halteproblems

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- > Theorem:
 - $-A_{TM} \leq_m HALT_{TM}$
- > Beweis
 - Betrachte Reduktionsfunktion F:
 - F = "Auf Eingabe <M, w>:
 - Konstruiere TM M':
 - M' = "Auf Eingabe x:
 - Führe M auf Eingabe x aus
 - Falls M akzeptiert, akzeptiert M'
 - Falls M verwirft, hält M' nicht"
 - F gibt <M',w> aus"



Ein alternativer Beweis für das Leerheitsproblem der TMs

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

 $\mathsf{E}_\mathsf{TM} = \{ \langle \mathsf{M} \rangle \mid M \text{ ist eine TM und } L(M) = \emptyset \}$ $- \mathsf{E}_\mathsf{TM} \text{ ist nicht entscheidbar}$

- Beweis: A_{TM} ≤_m E_{TM}
 - Betrachte Reduktionsfunktion F:
 - F = "Auf Eingabe <M, w>:
 - Konstruiere TM M':
 - M' = "Für jede Eingabe x:
 - Führe M auf Eingabe w aus
 - * Falls M akzeptiert, akzeptiert M'
 - * Falls M verwirft, verwirft M' "
 - F gibt M' aus"

> Zu zeigen:

- F ist eine berechenbare Funktion
 - M' kann effektiv aus M und w konstruiert werden
- $< M, w > \in A_{TM} \Leftrightarrow F(< M, w >) \in E_{TM}$
- \succ Falls <M, w> \in A_{TM}
 - dann ist $L(M') = \Sigma^*$
 - dann ist F(<M, w>) ∉ E_{TM}
- Falls <M, w> ∉A_{TM}
 - dann ist $L(M') = \emptyset$
 - dann ist F(<M, w>) ∈ E_{TM}
- Nun ist A_{TM} ≤_m E_{TM}
 - da A_{TM} nicht rekursiv ist
 - ist auch $\overline{E_{TM}}$ nicht rekursiv
 - damit ist auch E_{TM} nicht rekursiv

Reduktionen und Rekursive Aufzählbarkeit

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Theorem

Falls A ≤_m B und B ist rekursiv aufzählbar, dann ist A rekursiv aufzählbar.

- Sei M, eine Turing-Maschine, die B akzeptiert.
- Betrachte die Akzeptor-TM N:
- N = "Auf Eingabe w:
 - Berechne f(w)
 - Führe die Berechnung von M auf Eingabe f(w) durch
 - N gibt aus, was M ausgibt"
- Falls f(w) ∈ B,
 - dann akzeptiert M
 - dann ist auch $w \in A$
- Falls f(w) ∉B,
 - dann akzeptiert M nicht
 - dann ist auch w ∉ A

Nicht-Rekursive Aufzählbarkeit und Reduktionen

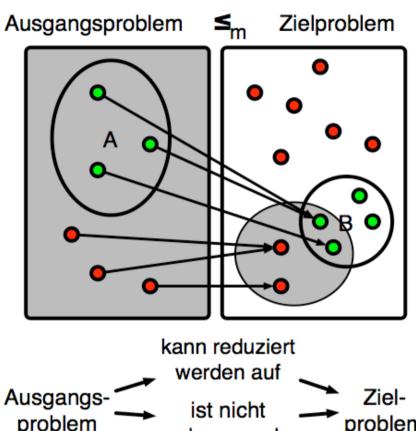
Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Theorem

 Falls A ≤_m B und B ist rekursiv aufzählbar, dann ist A rekursiv aufzählbar.

> Korollar

 Falls A ≤_m B und A ist nicht rekursiv aufzählbar, dann ist B nicht rekursiv aufzählbar.



Ende der 12. Vorlesung

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Informatik III Arne Vater 01.12.2006