Mobile Ad Hoc Networks 1st Week 17.04.-20.04.2007

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Christian Schindelhauer schindel@informatik.uni-freiburg.de

Organization

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻ Web-page

- http://cone.informatik.uni-freiburg.de/teaching/vorlesung/manet-s07/

Lectures

 Wednesday, 	11 am- 1 pm, c.t.	SR 01-016, Building 101
- Friday,	11 am-12 am, c.t.	SR 01-018, Building 101
Exercise class		
- Friday,	11 am-12 am, s.t.	SR 01-018, Building 101
– Start:	27.04.2007	

- Tutors:
 - Chia-Ching Ooi (ooi (at) informatik.uni-freiburg.de)
 - Faisal Aslam (asmal (at) informatik.uni-freiburg.de)

Exercises

- Appear every Friday on the Web page
- Solved by the students
- Solution are discussed and presented by the students during the exercise class

Organization

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻Exam

- Under 15 participants: oral exams
- More than 16 participants: written exam

≻ Time

- Oral: ask for an appointment on 25.07.2007
- Written exam, if any: 25.07.2007, 2pm

≻ Materials

- Powerpoint/PDF slides
 - one day before the lecture on the web-page
- Lecturnity videos
 - one day beore the lecture on the web-page
- Literature
 - presented during this lecture

Topics of the Lecture

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- 1. Organization and Literature
- 2. Introduction
- 3. Physical Layer
- 4. Topology Control & MAC Layer
- 5. Routing
- 6. Mobility, Deployment & Coverage
- 7. Transport Layer
- 8. Theory and Algorithms
- 9. Recent Advances & Future Challenges

Mobile Ad Hoc Networks

Literature I

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Editor: Jie Wu

- Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Networks and Peer-to-Per Networks
- Auerbach, 2005

Collection of works written by experts

Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks

Auerbach Publications

Literature II

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Murthy and Manoj

- Ad Hoc Wireless Networks, Architectures and Protocols
- Pearson/Prentice Hall, 2004
- Comprehensive Monography on Ad hoc Wireless Networking
- Recommended as one book covering early all aspects of wireless communication
 - 802.3, 802.11, HiperLAN, GSM, ATM, WATM, MobileIP, MANET, MAC for Wireless, Routing and Multicast Routing in MANETs, Transport layer, QoS, Energy Management, Sensor Networks, Hybrid Networks

Literature III

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Andrew S. Tanenbaum

- Computer Networks
- Pearson Education International

Introduction to Computer Networks

- Not a book for mobile ad hoc networks
- But a book for someone who wants to learn the essentials of computer networks
 - Read it if you haven't visited "Systeme II"

Literature IV

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Charles E. Perkins

- Ad Hoc Networking
- Addison-Wesley 2001

Classic book

- yet a little outdated

> Topics:

 mainly routing algorithms, like DSDV, Cluster-based Routing, DSR, AODV, ZRP, Link Reversal

Types of Networks

Cellular Networks

- base stations distributed over the field
- each base station covers a cell
- used for mobile phones
- WLAN can be seen as a special case

Mobile Ad Hoc Networks

- self-configuring network of mobile nodes
- node serve as client and router
- no infrastructure necessary

Sensor Networks

- network of sensor devices with controller and radio transceivers
- base station with more resources

Applications of MANETs

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Network Failure
- ≻Military
- Deserted Areas
- Entertainment
 - Spontanous games
 - Dating-Tool
- Sensor networks
 - Environmental control
 - Intelligent Home
 - Supermarket

Car technology

- Inter-car communication
- Car coordination

WLAN hotspot extension

Mobile Ad Hoc Networks

ISO/OSI Reference model

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

7. Application

 Data transfer, E-Mail, Terminal, Remote login

6. Presentation

 System dependent presentation of data (EBCDIC/ASCII)

5. Session

- Begin, end, return points

4. Transport

- Segmentation, congestion avoidance

3. Network

- Routing

2. Data link

- Checksum, flow control
- 1. Physical layer
 - Mechanical, electric methods

Comparison Internet Layers

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Physics of Electromagnetic Waves

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- \succ Frequency *f*: number of oscilations per second
 - unit of measurement : Hertz
 - wave length λ : distance (in meters) between wave maxima
 - The propagation speed of waves in vacuum is constant:
 - speed of light c \thickapprox 3 $\,\cdot$ 10⁸ m/s

≻Note that:

$$\lambda \cdot f = \mathbf{c}$$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Amplitude representation of a sinus curve

- $s(t) = A sin(2\pi f t + \varphi)$
- A: amplitude ϕ : phase shift
- -f: frequency = 1/T T: period

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Fourier transformation of a periodic function:

- Decomposition into sinus curves

- > Dirichlet's conditions for a periodic function:
 - $f(x) = f(x+2\pi)$
 - f(x) is continuous and monotone in finitely many intervals of $(-\pi,\pi)$
 - If is non-coninuous in x_0 , then $f(x_0)=(f(x_0-0)+f(x_0+0))/2$
- > Theorem of Dirichlet:
 - f(x) satisfies Dirichlet's conditions . Then the Fourier coefficients $a_0, a_1, a_2, \dots, b_1, b_2, \dots$ exist such that:

$$\lim_{n \to \infty} \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx = f(x) \; .$$

Computation of Fourier coefficients

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> Fourier coeffizients a_i , b_i can be computed as follows

- For k = 0,1,2,...
- For k = 1,2,3,...

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx$$

> Example: saw tooth curve

$$f(x) = x \text{, für } 0 < x < 2\pi$$
$$f(x) = \pi - 2\left(\frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots\right)$$

Fourier-Analysis

> Theorem of Fourier for period T=1/f:

– The coefficients *c*, a_n , b_n can be computed as follows

$$g(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(2\pi k f t) + b_k \sin(2\pi k f t)$$

$$a_k = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
$$b_k = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

> The square of the sum of the k-th terms is proportional to the energy in this frequency $(a_k)^2 + (b_k)^2$

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Suitability of different frequencies – Attenuation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Attenuation depends on the used frequency
- Can result in a frequency-selective channel
 - If bandwidth spans frequency ranges with different attenuation properties

http://www.geographie.uni-muenchen.de/iggf/Multimedia/Klimatologie/physik_arbeit.htm

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

≻VLF, LF, MF

- follow the curvature of the globe (up zu 1000 kms in VLF)
- pass through buildings

≻HF, VHF

- absorbed by earth
- reflected by ionosphere in a height of 100-500 km

≻>100 MHz

- No passing through walls
- Good focus

> 8 GHz absorption by rain

Radio Propagation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Multiple Path Fading

- Because of reflection, diffraction and diffusion the signal arrives on multiple paths
- Phase shifts because of different path length causes interferences

Problems with mobile nodes

- Fast Fading
 - Different transmission paths
 - Different phase shifts
- Slow Fading
 - Increasing or decreasing the distance between sender and receiver

Radio Propagation

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Propagation on straight line

Signal strength is proportional to 1/d² in free space

- In practice can be modeled by $1/d^c$, for c up to 4 or 5
- Energy consumption
 - for transmitting a radio signal over distance d in empty space is d²

Basic properties

- Reflection, Refraction (between media with slower speed of propagation)
- Interference
- Diffraction
- Attenuation in air (especially HV, VHF)
- Scattering multiple reflections at rough surfaces
- Doppler fading shift in frequencies (loss of center)

Path loss exponents

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Some example measurements

- γ path loss exponent
- Shadowing variance $\sigma^{\! 2}$
- Reference path loss at 1 m

Location	Average of γ	Average of σ^2 [dB]	Range of PL(1m)[dB]
Engineering Building	1.9	5.7	[-50.5, -39.0]
Apartment Hallway	2.0	8.0	[-38.2, -35.0]
Parking Structure	3.0	7.9	[-36.0, -32.7]
One-sided Corridor	1.9	8.0	[-44.2, -33.5]
One-sided patio	3.2	3.7	[-39.0, -34.2]
Concrete canyon	2.7	10.2	[-48.7, -44.0]
Plant fence	4.9	9.4	[-38.2, -34.5]
Small boulders	3.5	12.8	[-41.5, -37.2]
Sandy flat beach	4.2	4.0	[-40.8, -37.5]
Dense bamboo	5.0	11.6	[-38.2, -35.2]
Dry tall underbrush	3.6	8.4	[-36.4, -33.2]

© Tanenbaum, Computer Networks 17.04.2007 1st Week - 24

Mobile Ad Hoc Networks

Amplitude Shift Keying (ASK)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

>Let $E_i(t)$ be the symbol energy at time t

$$s_i(t) = \sqrt{\frac{2E_i(t)}{T}} \cdot \sin(\omega_0 t + \phi)$$

> The first term is a convention such that E_i denotes the energy > Example: $E_0(t) = 1$, $E_1(t)=2$ for all t

Mobile Ad Hoc Networks

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> For phase signals $\phi_i(t)$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_0 t + \phi_i(t))$$

Figure 4.3 Phase shift keying (PSK) example

Mobile Ad Hoc Networks

Frequency Shift Keying (FSK)

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

> For frequency signals $\omega_i(t)$

$$s_i(t) = \sqrt{\frac{2E}{T}} \cdot \sin(\omega_i(t) \cdot t + \phi)$$

Mobile Ad Hoc Networks

Signal Interference Noise Ratio

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Receiving-power = Transmission-power · path-loss

- path loss ~ $1/r^{\beta}$
- $\beta \in [2,5]$

Signal to Interference + Noise Ratio = SINR

- -S = receiving power from desired sender
- -I = receiving power from interfering senders
- N = other interfering signals (e.g. noise)

Necessary for recognizing the signal:

$$\mathsf{SINR} = \frac{S}{I+N} \ge \mathsf{T}hreshold$$

Attenuation results in path loss

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Effect of attenuation: received signal strength is a function of the distance d between sender and transmitter
- Captured by Friis free-space equation
 - Distance: R
 - Wavelength: $\boldsymbol{\lambda}$
 - P_r: power at receive antenna
 - Pt: power at transmit antenna
 - G_t: transmit antenna gain
 - G_r: receive antenna gain

$$P_r(d) = P_r(d_0) \cdot \left(\frac{d_0}{d}\right)^2$$

- Extracting symbols out of a distorted/corrupted wave form is fraught with errors
 - Depends essentially on strength of the received signal compared to the corruption
 - Captured by signal to noise and interference ratio (SINR) given in decibel:

$$SINR = 10 \log_{10} \left(\frac{P_{\text{recv}}}{N_0 + \sum_{i=1}^k I_i} \right)$$

SINR allows to compute bit error rate (BER) for a given modulation

 Also depends on data rate (# bits/symbol) of modulation

A w

Wireless signal strength in a multi-path environment

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

- Brighter color = stronger signal
- Obviously, simple (quadratic) free space attenuation formula is not sufficient to capture these effects

> So far: only a single transmitter assumed

Only disturbance: self-interference of a signal with multi-path "copies" of itself

In reality, two further disturbances

- Noise due to effects in receiver electronics, depends on temperature
 - Typical model: an additive Gaussian variable, mean 0, no correlation in time
- *Interference* from third parties
 - Co-channel interference: another sender uses the same spectrum
 - Adjacent-channel interference: another sender uses some other part of the radio spectrum, but receiver filters are not good enough to fully suppress it

> Effect:

Received signal is distorted by channel, corrupted by noise and interference

Sharing the Medium

University of Freiburg Institute of Computer Science Computer Networks and Telematics Prof. Christian Schindelhauer

Space-Multiplexing

- Spatial distance
- Directed antennae

>Frequency-Multiplexing

 Assign different frequencies to the senders

Time-Multiplexing

 Use time slots for each sender

Spread-spectrum communication

- Direct Sequence Spread Spectrum (DSSS)
- Frequency Hopping Spread Spectrum (FHSS)

Code Division Multiplex

Thank you!

University of Freiburg Computer Networks and Telematics Prof. Christian Schindelhauer Mobile Ad Hoc Networks Christian Schindelhauer schindel@informatik.uni-freiburg.de

1st Week 17.04.2007