

Peer-to-Peer Networks

1

Organization and Introduction 1st Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

Peer-to-Peer Networks

Organization

Web & Dates

Web page

- <u>http://cone.informatik.uni-freiburg.de/lehre/vorlesung/</u>
 <u>peer-to-peer-s08/index.html</u>
- Lecture
 - Tuesday, 11am-1pm, building 101, room 00-010/14
 - Wednesday, 11am-12am, building 101, room 00-010/14
- Exercise
 - Arne Vater
 - Wednesday, 12am-1pm, building 101, room 00-010/14

Exercises

• Exercise class

- Wednesday, 12am-1pm, building 101, room 00-010/14
- start: 30.04.2008
- Exercises
 - appear every Wednesday on the web-pages
 - should be solved by students
 - are the bases for the oral exam
 - solutions of the exercises are discussed in the following week

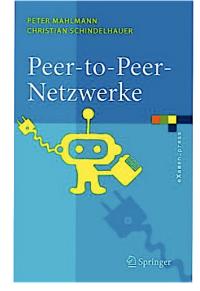
Exam

Dates by appointment

- possible dates are presented in the last four lectures
 - probably first week after the lecture and in the middle of the lecture free summer
- Contact me during the lecture or send an E-Mail to schindel@informatik.uni-freiburg.de
- Oral exam
 - based on the lecture and the exercises
- Mandatory registration
 - Students of computer science register at the secretary of exams (*Prüfungssekretariat*)

Materials

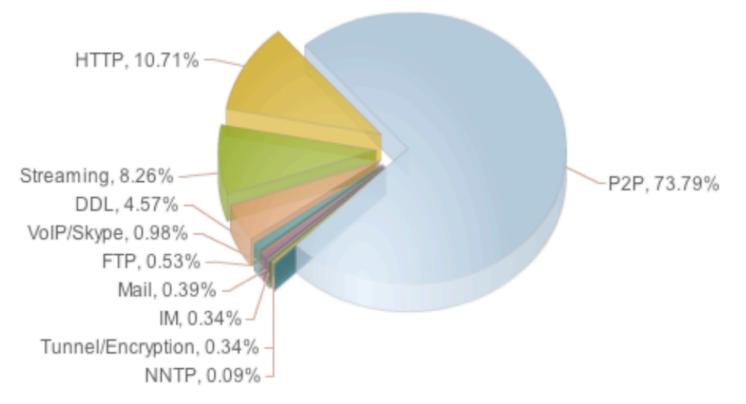
Slides


• appear before the lecture on the web-page

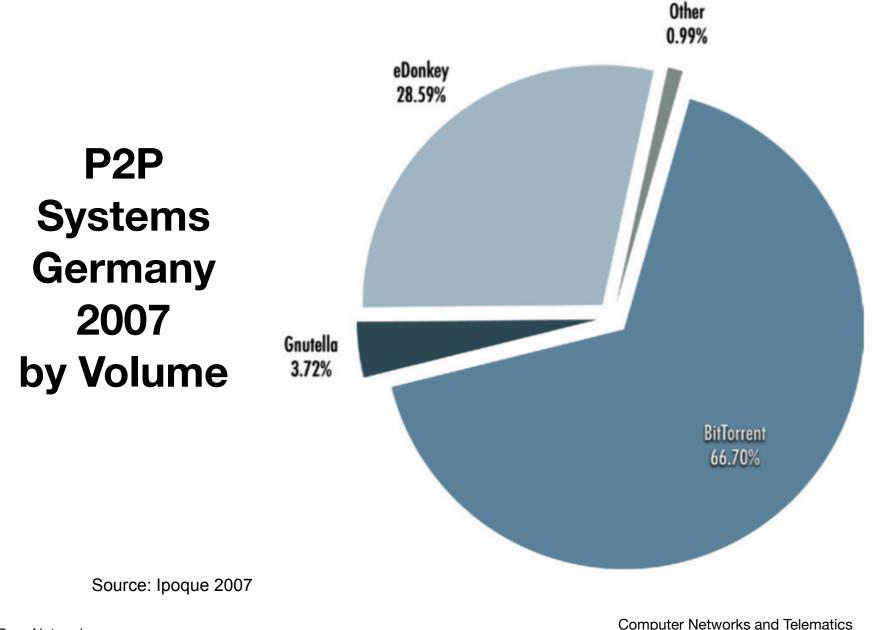
Book

 at least 70% of the lecture can be found in Mahlmann, Schindelhauer, Peer-to-Peer-Netzwerke — Methoden und Algorithmen, Springer 2007

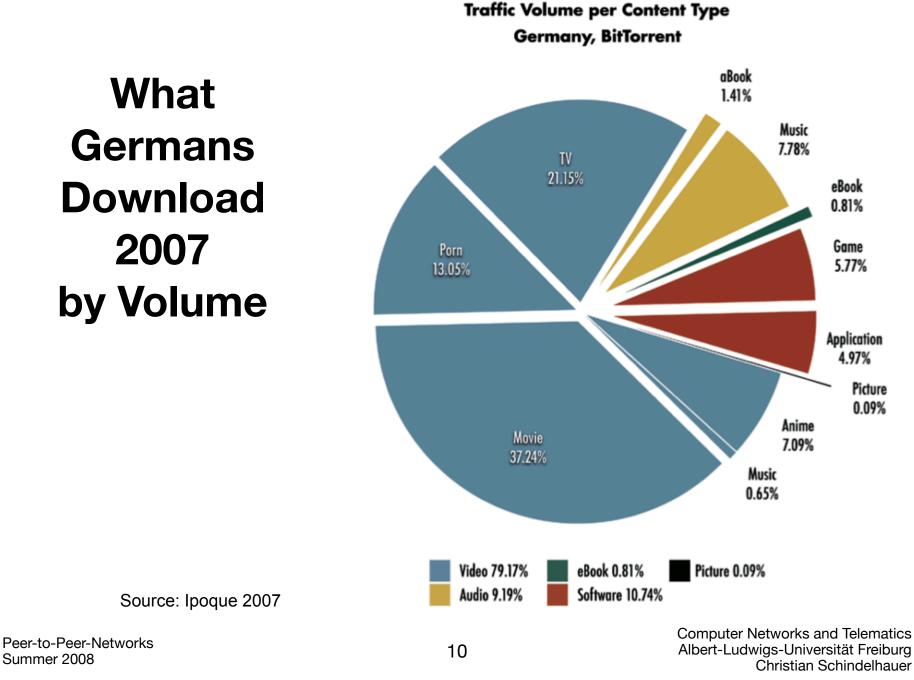
Further Literature


• Research papers will be presented during the lecture on the slides and on the web-page

Peer-to-Peer Networks

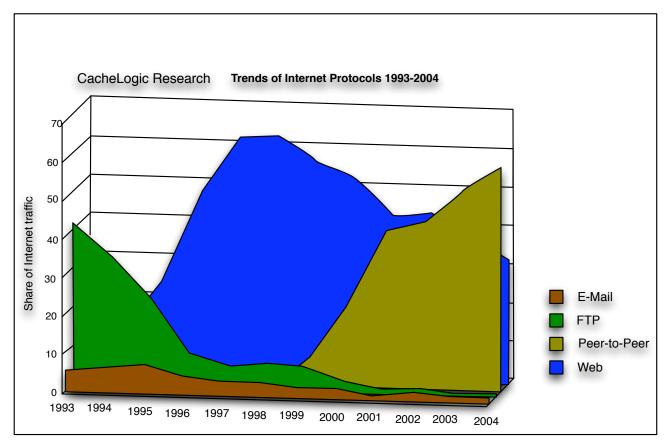

Motivation

P2P Share Germany 2007



Source: Ipoque 2007

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer



Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Mittwoch, 7. Mai 2008


Global Internet Traffic Shares 1993-2004

Source: CacheLogic 2005

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

P2P Share June 2004



Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Global Internet Traffic 2007

Ellacoya report (June 2007)

- worldwide HTTP traffic volume overtakes P2P after four years continues record
- Main reason: Youtube.com

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Milestones P2P Systems

- Napster (1st version: 1999-2000)
- Gnutella (2000), Gnutella-2 (2002)
- Edonkey (2000)
 - later: Overnet usese Kademlia
- FreeNet (2000)
 - Anonymized download
- JXTA (2001)
 - Open source P2P network platform

- FastTrack (2001)
 - known from KaZaa, Morpheus, Grokster
- Bittorrent (2001)
 - only download, no search
- Skype (2003)
 - VoIP (voice over IP), Chat, Video

Milestones Theory

Distributed Hash-Tables (DHT) (1997)

- introduced for load balancing between web-servers
- CAN (2001)
 - efficient distributed DHT data structure for P2P networks
- Chord (2001)
 - efficient distributed P2P network with logarithmic search time
- Pastry/Tapestry (2001)
 - efficient distributed P2P network using Plaxton routing
- Kademlia (2002)
 - P2P-Lookup based on XOr-Metrik

- Many more exciting approaches
 - Viceroy, Distance-Halving, Koorde, Skip-Net, P-Grid, ...
- Recent developments
 - Network Coding for P2P
 - Game theory in P2P
 - Anonymity, Security

What is a P2P Network?

- What is P2P NOT?
 - a peer-to-peer network is *not a client-server network*

Etymology: peer

- from latin par = equal
- one that is of equal standing with another
- P2P, Peer-to-Peer: a relationship between equal partners
- Definition
 - a Peer-to-Peer Network is a communication network between computers in the Internet
 - without central control
 - and without reliable partners
- Observation
 - the Internet can be seen as a large P2P network

Contents

- Short history
- First Peer-to-Peer Networks
 - Napster
 - Gnutella
- CAN
- Chord
- Pastry und Tapestry
- Hop optimal networks
- Internet and hole-punching
- Game theory
- P2P traffic
- Codes
- P2P in the real world

Peer-to-Peer Networks

The First P2P-Network – Napster

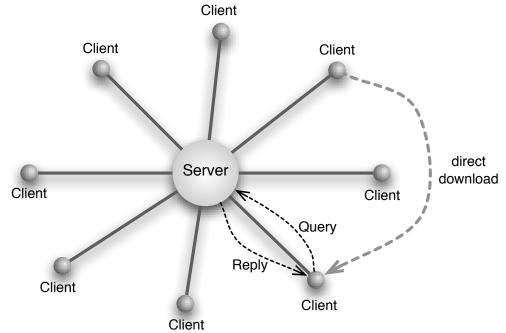
Napster

• Shawn (Napster) Fanning

- published 1999 his beta version of the now legendary Napster P2P network
- File-sharing-System
- Used as mp3 distribution system
- In autumn 1999 Napster has been called download of the year
- Copyright infringement lawsuit of the music industry in June 2000
- End of 2000: cooperation deal
 - between Fanning and Bertelsmann Ecommerce
- Since then Napster is a commercial file-sharing platform

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

How Did Napster Work?


Client-Server

Server stores

- Index with meta-data
 - file name, date, etc
- table of connections of participating clients
- table of all files of participants

Query

- client queries file name
- server looks up corresponding clients
- server replies the owner of the file
- querying client downloads the file from the file owning client

Discussion of Napster

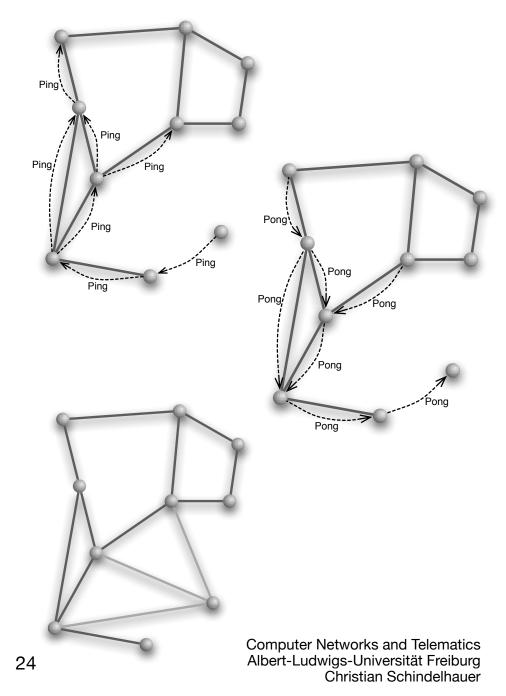
Advantages

- Napster is simple
- Files can be found fast and effective

Disadvantages

- Central structure eases censorship, hostile attacks and vulnerability against technical problems
 - e.g. denial of service (DOS) attack
- Napster does not scale
 - i.e. increasing number of participants implies a decline in performance
 - bandwith and memory of the server is limited
- Conclusion
 - Napster is not an acceptable P2P network solution
 - Except the download part Napster is not a real P2P network

Peer-to-Peer Networks The First Real P2PNetwork — Gnutella

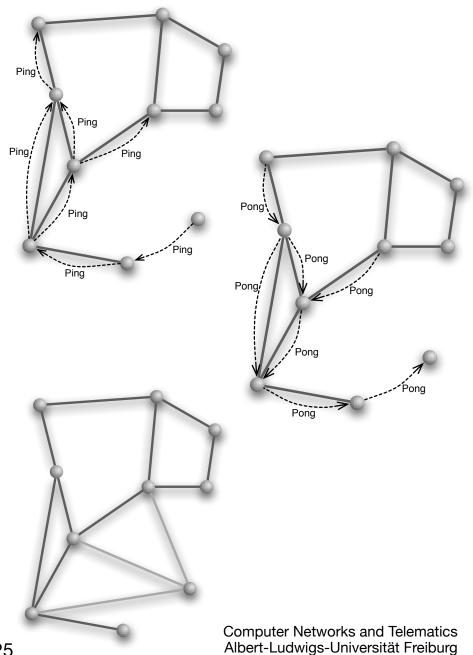

History of Gnutella

Gnutella

- was released in March 2000 by Justin Frankel and Tom Pepper from Nullsoft
- Since 1999 Nullsoft is owned by AOL
- File-Sharing system
 - Same goal as Napster
 - But without any central structures

Gnutella – Connecting

- Neighbor lists
 - Gnutella connects directly with other clients
 - the client software includes a list of usually online clients
 - the clients checks these clients until an active node has been found
 - an active client publishes its neighbor list
 - the query (ping) is forwarded to other nodes
 - the answer (pong) is sent back
 - neighbor lists are extended and stored
 - the number of the forwarding is limited (typically: five)

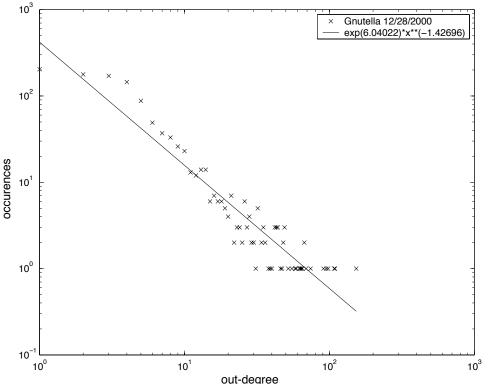

Summer 2008

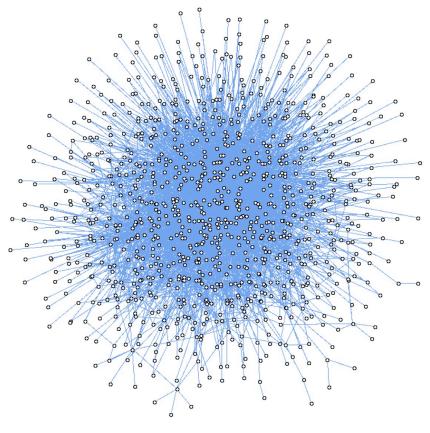
Peer-to-Peer-Networks

Gnutella – Connecting

Protokoll

- Ping
 - participants query for neighbors
 - are forwarded according for TTL steps (time to live)
- Pong
 - answers Ping
 - is forwarded backward on the query path
 - reports IP and port adress (socket pair)
 - number and size of available files

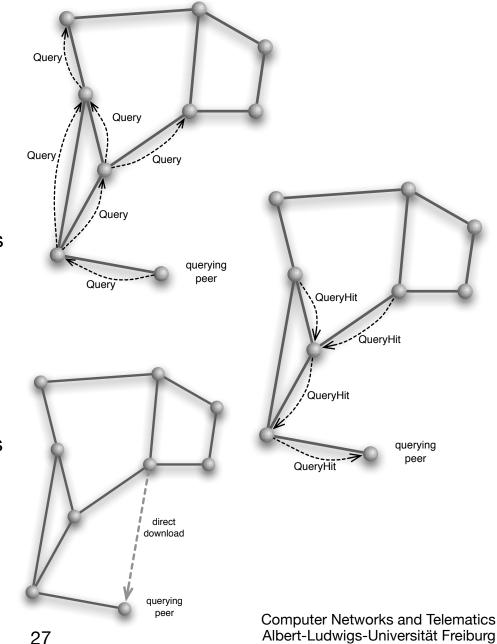



Peer-to-Peer-Networks Summer 2008

Christian Schindelhauer

Gnutella – Graph Structure

- Graph structure
 - constructed by random process
 - underlies power law



Gnutella snapshot in 2000 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Gnutella – Query

- File Query
 - are sent to all neighbors
 - Neighbors forward to all neighbors
 - until the maximum hop distance has been reached
 - TTL-entry (time to live)
- Protocol
 - Query
 - for file for at most TTL hops
 - Query-hits
 - answers on the path backwards
- If file has been found, then initiate direct download

Peer-to-Peer-Networks Summer 2008

Christian Schindelhauer

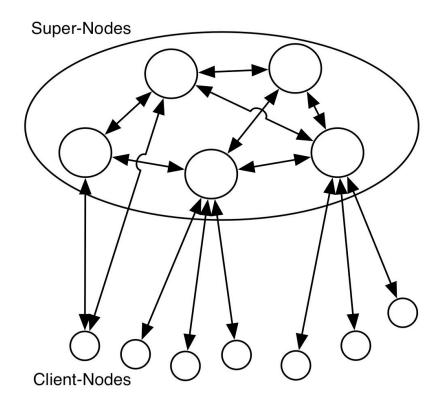
Gnutella - Discussion

Advantages

- distributed network structure
- scalable network

Disadvantages

- bounded breadth depth search leads to implizit network partition
- this reduces success probability
- long paths, slow latency


Suggested improvements

- random walks instead broadcasting
- passive replikation of index information

FastTrack & Gnutella2

Hybrid Structure

- high bandwidth node are elected as P2Pservers, aka. super-nodes
- super-nodes are connected using the original Gnutella protocol
- client nodes are connected only to supernodes
- Used in
 - FastTrack
 - Gnutella 2
- Advantages
 - improved scalability
 - smaller latency
- Disadvantages
 - still unreliable and slow
 - peers decline to serve as super-nodes

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer Networks End of 1st Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008