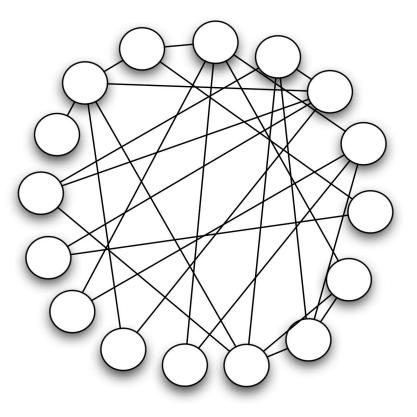


Peer-to-Peer Networks DHT & CAN 2nd Week

1


Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008 Peer-to-Peer Networks

Distributed Hash Tables (DHT)

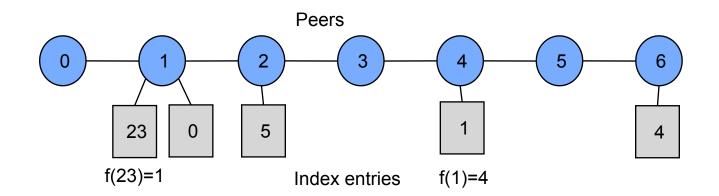
Why Gnutella Does Not Really Scale

Gnutella

- graph structure is random
- degree of nodes is small
- small diameter
- strong connectivity
- Lookup is expensive
 - for finding an item the whole network must be searched
- Gnutella's lookup does not scale
 - reason: no structure within the index storage

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Two Key Issues for Lookup

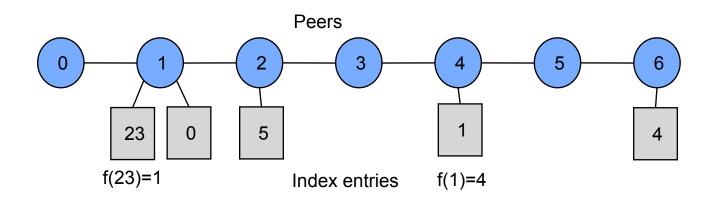

4

- Where is it?
- How to get there?
- Napster:
 - Where? on the server
 - How to get there? directly
- Gnutella
 - Where? don't know
 - How to get there? don't know
- Better:
- Where is x?
 - at f(x)
- How to get there?
 - all peers know the route

(Bad) Idea: Use Hashing

- Give each of n peers a number 0,1,..,n-1
 - use hash function
 - e.g. $f(x) = (3x+1 \mod 23) \mod 7$
 - peers are connected on a chain

- Lookup
 - compute f(x)
 - forward message to f(x) along the chain



Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Problems with Pure Hashing

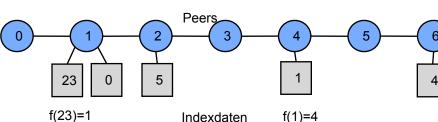
- Insert and deletion of peers critical
 - if a peer leaves without warning then network breaks up
 - inserting a peer implies readjusting the whole entries
 - hash function must be changed to new version

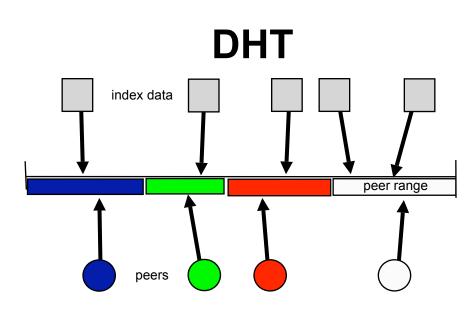
- how to assign the numbers to peers?
- Lookup is not efficient
 - takes linear time on the average
 - the peers in the middle see 50% of all lookups

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Distributed Hash-Table (DHT)

Pure (Poor) Hashing

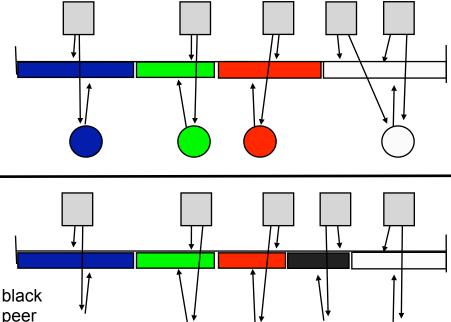

Hash table

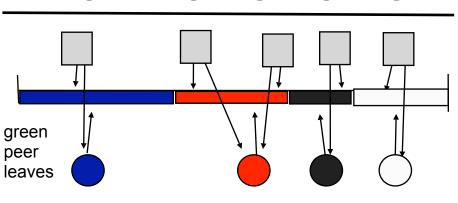

- does not work efficiently for inserting and deleting
- Distributed Hash-Table
 - peers are "hashed" to a position in an continuos set (e.g. line)
 - index data is also "hashed" to this set

Mapping of index data to peers

- peers are given their own areas depending on the position of the direct neighbors
- all index data in this area is mapped to the corresponding peer
- Literature
 - "Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web", David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin, Rina Panigrahy, STOC 1997

Peer-to-Peer-Networks Summer 2008

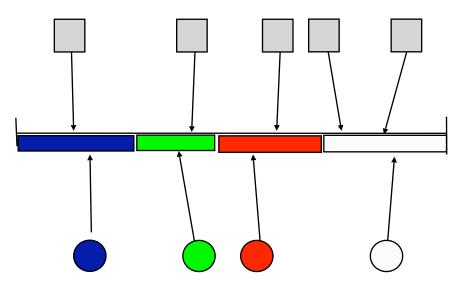

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer


7

Entering and Leaving a DHT

Distributed Hash Table

- peers are hashed to to position
- index files are hashed according to the search key
- peers store index data in their areas
- When a peer enters
 - neighbored peers share their areas with the new peer
- When a peer leaves
 - the neighbors inherit the responsibilities for the index data

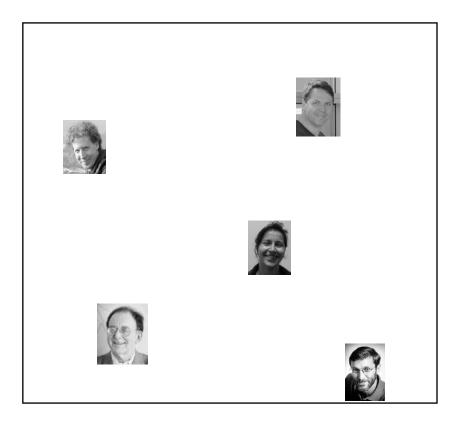

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008 enters

Features of DHT

Advantages

- Each index entries is assigned to a specific peer
- Entering and leaving peers cause only local changes
- DHT is the dominant data struction in efficient P2P networks
- To do:
 - network structure

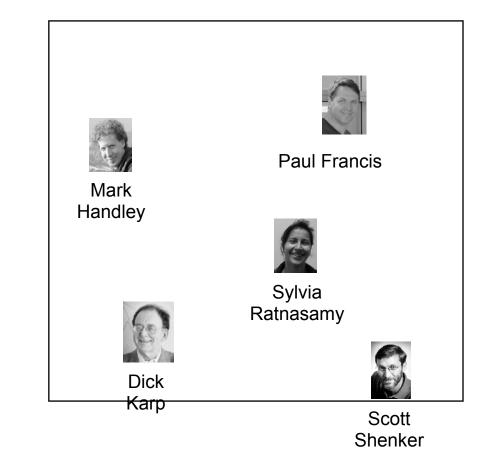

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Peer-to-Peer Networks

Content Addressable Network (CAN)

CAN Playground

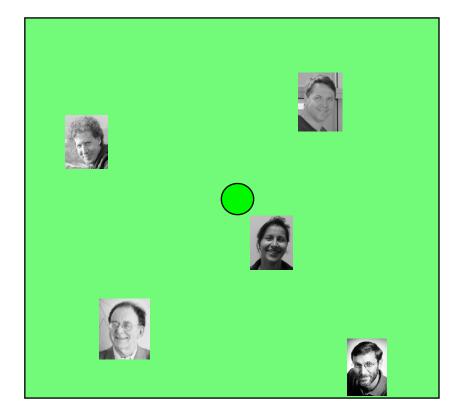
- Index entries are mapped to the square [0,1]²
 - using two hash functions to the real numbers
 - according to the search key
- Assumption:
 - hash functions behave a like a random mapping



CAN Index Entries

- Index entries are mapped to the square [0,1]²
 - using two hash functions to the real numbers
 - according to the search key
- Assumption:
 - hash functions behave a like a random mapping

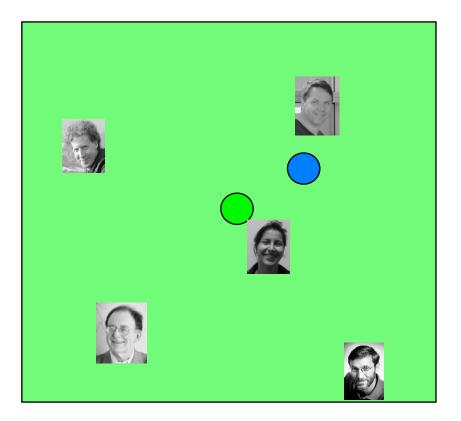
Literature


 Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: Computer Communication Review. Volume 31., Dept. of Elec. Eng. and Comp. Sci., University of California, Berkeley (2001) 161–172

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

First Peer in CAN

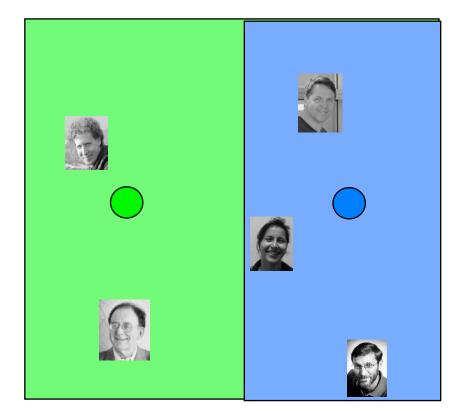
- In the beginning there is one peer owning the whole square
- All data is assigned to the (green) peer



Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

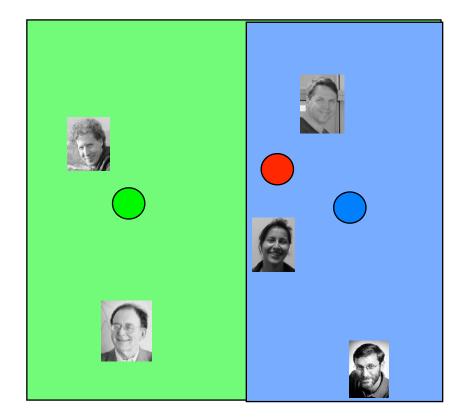
Mittwoch, 7. Mai 2008

CAN: The 2nd Peer Arrives


- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner

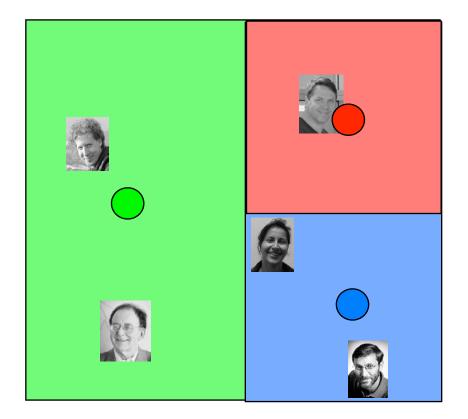
Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

CAN: 2nd Peer Has Settled Down


- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

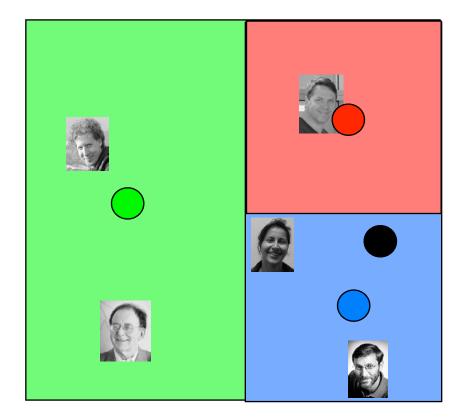
3rd Peer


- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

CAN: 3rd Peer

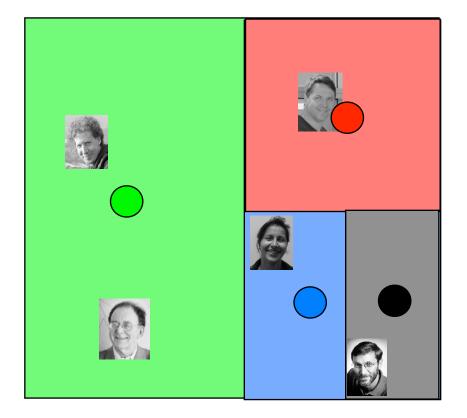
- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer



Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

CAN: 4th Peer

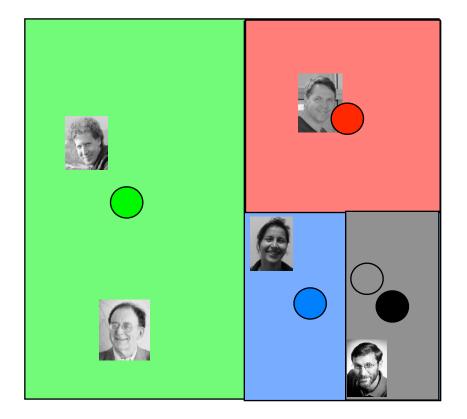
18


- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

CAN: 4th Peer Added

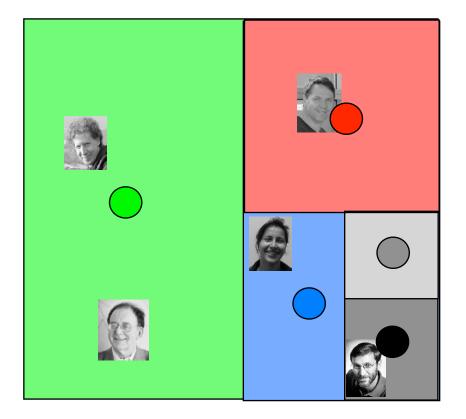
- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer



Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

19

CAN: 5th Peer


- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer

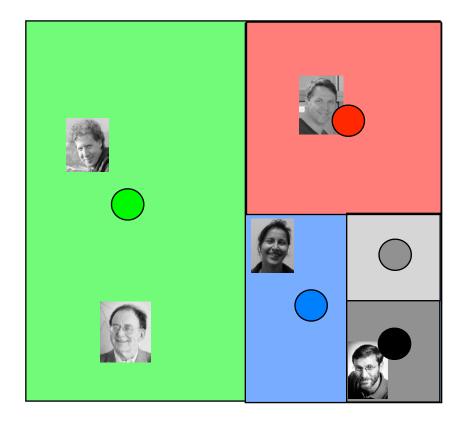
Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

CAN: All Peers Added

- The new peer chooses a random point in the square
 - or uses a hash function applied to the peers Internet address
- The peer looks up the owner of the point
 - and contacts the owner
- The original owner divides his rectangle in the middle and shares the data with the new peer

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

On the Size of a Peer's Area


- R(p): rectangle of peer p
- A(p): area of the R(p)
- n: number of peers
- area of playground square: 1
- Lemma
 - For all peers we have E[A]

$$l(p)] = \frac{1}{n}$$

Lemma

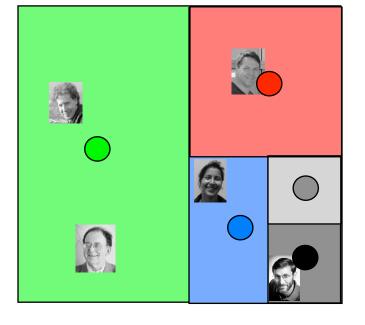
 Let P_{R,n} denote the probability that no peers falls into an area R. Then we have

$$P_{R,n} \le e^{-n\operatorname{Vol}(R)}$$

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Expected Area of a Peer

- Lemma
 - For all peers we have $E[A(p)] = \frac{1}{r}$
- Proof
 - Let {1,...,n} be the peers
 - inserted in a random order
 - Then *n*


$$\sum_{i=1} A(p) = 1$$

• Because of symmetry
$$\forall i \in \{1, \dots, n\}$$
 : $A(i) = A(1)$

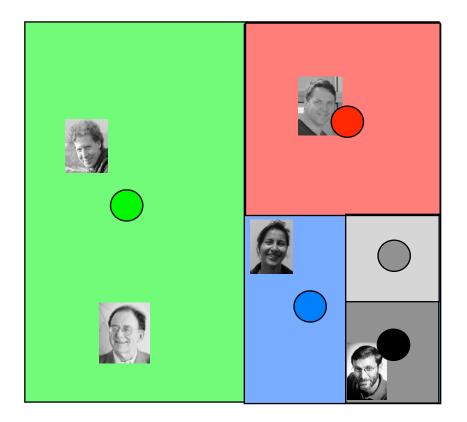
• Therefore

$$1 = \sum_{i=1}^{n} A(i) = E\left[\sum_{i=1}^{n} A(i)\right] = \sum_{i=1}^{n} E[A(i)] = nE[A(1)]$$

Peer-to-Peer-Networks Summer 2008

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

On the Size of a Peer's Area


- R(p): rectangle of peer p
- A(p): area of the R(p)
- n: number of peers
- area of playground square: 1
- Lemma
 - For all peers we have E[A]

$$(p)] = \frac{1}{n}$$

Lemma

 Let P_{R,n} denote the probability that no peers falls into an area R. Then we have

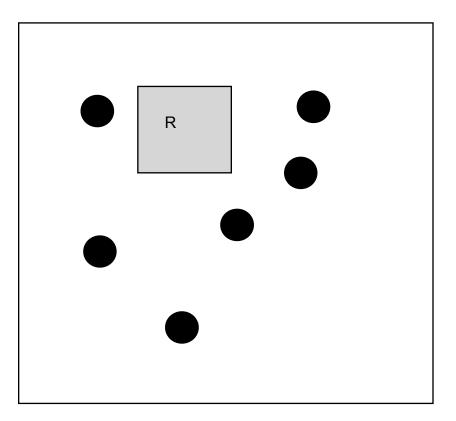
$$P_{R,n} \le e^{-n\operatorname{Vol}(R)}$$

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

An Area Not being Hit

Lemma

• Let $P_{\rm R,n}$ denote the probability that no peers falls into an area R. Then we have $P_{R,n} \leq e^{-n \operatorname{Vol}(R)}$


Proof

- Let x=Vol(R)
- The probability that a peer does not fall into R is 1 x
- The probability that n peers do not fall into R is $(1-x)^n$
- So, the probability is bounded by

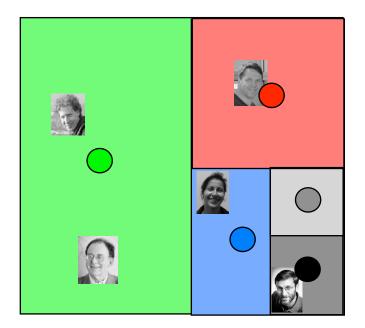
$$(1-x)^n = ((1-x)^{\frac{1}{x}})^{nx} \le e^{-nx}$$

• because

$$m > 1 : \left(1 - \frac{1}{m}\right)^m \le \frac{1}{e}$$

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

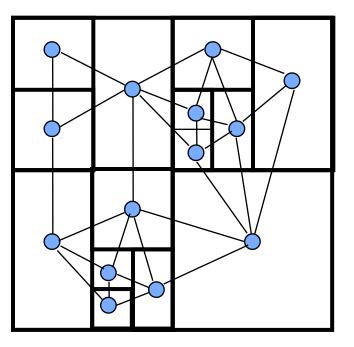
How Fair Are the Data Balanced


Lemma

- With probability n^{-c} a rectangle of size (c ln n)/n is not further divided
- Proof
 - Let $P_{\text{R,n}}$ denote the probability that no peers falls into an area R. Then we have $P_{R,n} \leq e^{-n \operatorname{Vol}(R)}$

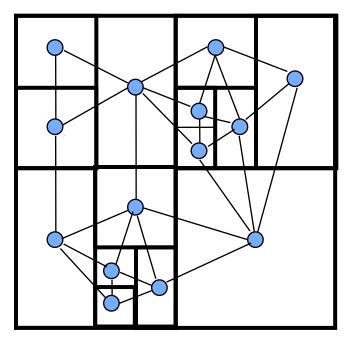
 $P_{R,n} \le e^{-n\frac{c\ln n}{n}} = e^{-c\ln n} = n^{-c}$

- Every peer receives at most c (ln n) m/n elements
 - if all m elements are stored equally distributed over the area
- While the average peer stores m/n elements


 So, the number of data stored on a peer is bounded by c (In n) times the average amount

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

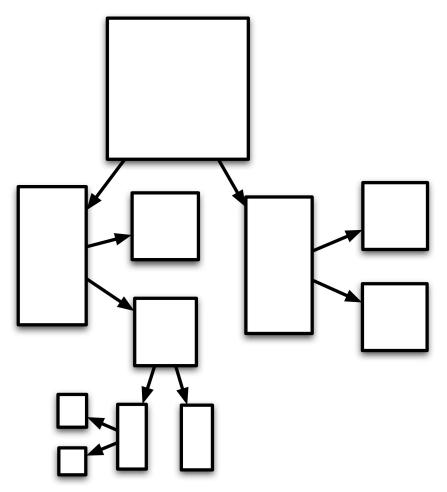
Network Structure of CAN


- Let d be the dimension of the square, cube, hyper-cube
 - 1: line
 - 2: square
 - 3: cube
 - 4:...
- Peers connect
 - if the areas of peers share a (d-1)dimensional area
 - e.g. for d=2 if the rectangles touch by more than a point

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Lookup in CAN

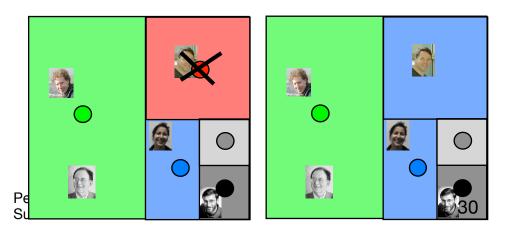
- Compute the position of the index using the hash function on the key value
- Forward lookup to the neighbored peer which is closer to the index
- Expected number of hops for CAN in d dimensions:
 - $O(n^{1/d})$
- Average degree of a node
 - O(d)

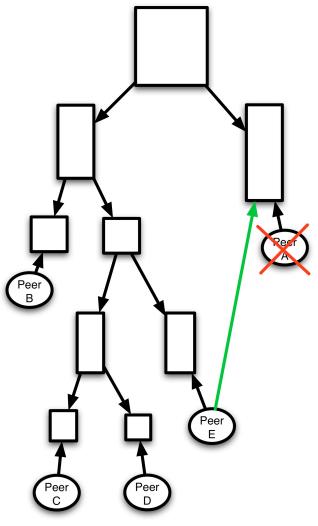


Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Insertions in CAN = Random Tree

Random Tree

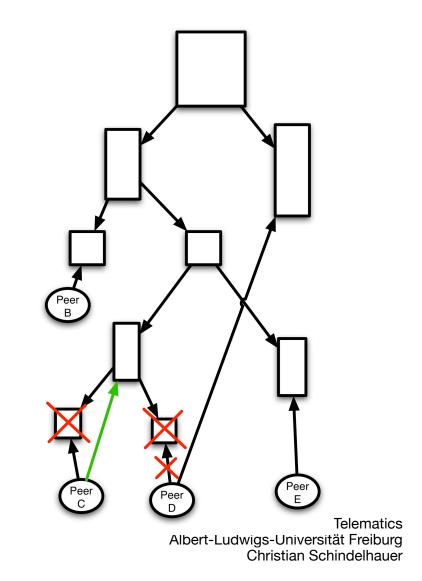

- new leaves are inserted randomly
- if node is internal then flip coin to forward to left or right sub-tree
- if node is leaf then insert two leafs to this node
- Depth of Tree
 - in the expectation: O(log n)
 - Depth O(log n) with high probability, i.e. 1-n^{-c}
- Observation
 - CAN inserts new peers like leafs in a random tree



Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Leaving Peers in CAN

- If a peer leafs
 - he does not announce it
- Neighbors continue testing on the neighborhood
 - to find out whether peer has left
 - the first neighboir who finds a missing neighbor takes over the area of the missing peer
- Peers can be responsible for many rectangles
- Repeated insertions and deletions of peers leed to fragmentation

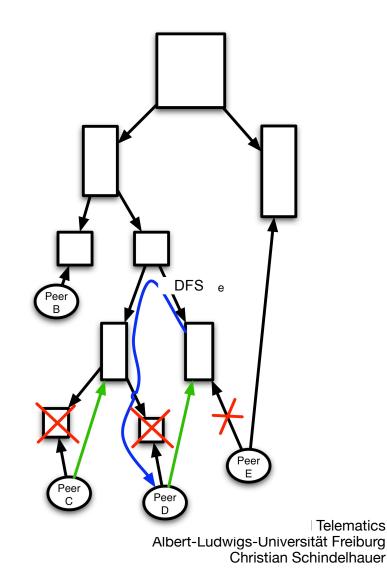


Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Defragmentation — The Simple Case

To heal fragmented areas

- from time to to time areas are freshly assigned
- Every peer with at least two zones
 - erases smalles zone
 - finds replacement peer for this zone
- 1. case: neighboring zone is undivided
 - both peers are leafs in the random tree
 - transfer zone to the neighbor

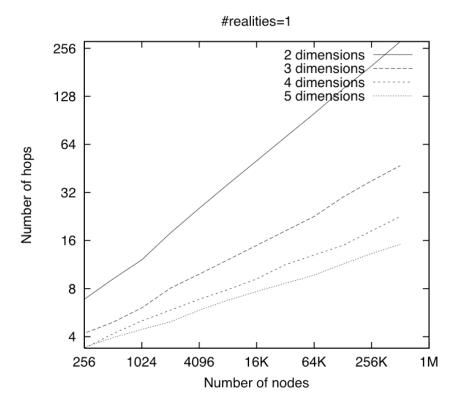


Defragmentation — The Difficult Case

32

Every peer with at least two zones

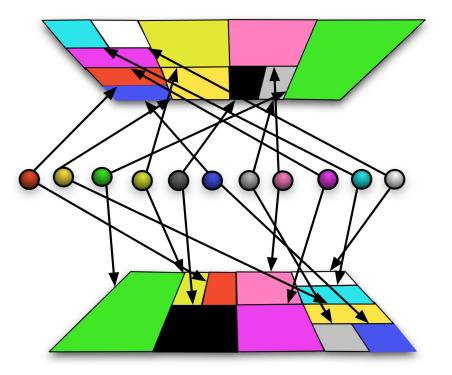
- erases smalles zone
- finds replacement peer for this zone
- 2. case: neighboring zone is further divided
 - Perform DFS (depth first search) in neighbor tree until two neighbored leafs are found
 - Transfer the zone to one leaf which gives up his zone
 - Choose the other leaf to receive the latter zone



Improvements for CAN

- More dimensions
- Multiples realities
- Distance metric for routing
- Overloading of zones
- Multiple hasing
- Topology adapted network construction
- Fairer partitioning
- Caching, replication and hot-spot management

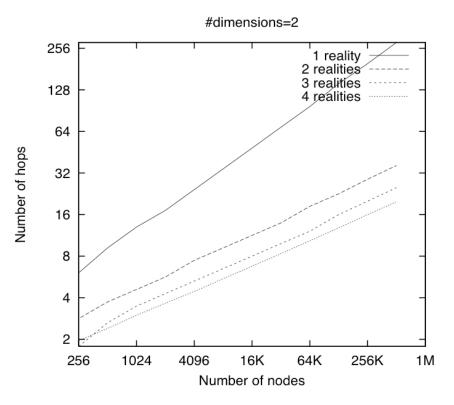
Higher Dimensions


- Let d be the dimension of the square, cube, hyper-cube
 - 1: line
 - 2: square
 - 3: cube
 - 4: ...
- The expected path length is O(n^{1/d})
- Average number of neighbors O(d)

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

More Realities

- Build simultanously r CANs with the same peers
- Each CAN is called a *reality*
- For lookup
 - greedily jump between realities
 - choose reality with the closest distance to the target
- Advantanges
 - robuster network
 - faster search

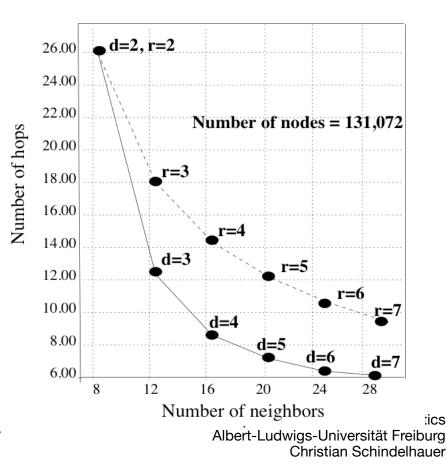


Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

More Realities

Advantages

- robuster
- shorter paths


Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Realities vs. Dimensions

- Dimensionens reduce the lookup path length more effciently
- Realities produce more robust networks

increasing dimensions, #realities=2

increasing realities, #dimensions=2

Peer-to-Peer Networks

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008