

Peer-to-Peer Networks

Anonymity (1st part) 8th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

1

Motivation

Society

- Free speech is only possible if the speaker does not suffer negative consequences
- Thus, only an anonymous speaker has truly free speech

Copyright infringement

- Copying items is the best (and most) a computer can do
- Copyright laws restrict copying
- Users of file sharing systems do not want to be penalized for their participation or behavior

Dictatorships

 A prerequisite for any oppressing system is the control of information and opinions

- Authors, journalists, civil rights activists like all citizens should be able to openly publish documents without the fear of penalty
- Democracies
 - In many democratic states certain statements or documents are illegitimate, e.g.
 - (anti-) religious statements
 - insults (against the royalty)
 - certain sexual contents
 - political statements (e.g. for fascism, communism, separation, revolution)
- A anonymizing P2P network should secure the privacy and anonymity of each user without endangering other users

Terms

- From
 - Danezis, Diaz, A Survey of Anonymous Communication Channels
 - Pfitzmann, Hansen, Anonymity, Unobservability and Pseudonymity – A Proposal for Terminology
- **Anonymity** (Pfitzmann-Hansen 2001)
 - describes the state of being not identifiable within a larger set of subjects (peers), i.e.
 - the anonymity set
 - The anonymity set can be all peers of a peer-to-peer network

3

- yet can be another (smaller or larger) set

Terms

Unlinkability

- Absolute (ISO15408)
 - "ensures that a user may make multiple uses of resources or services without other being able to link these uses together."
- Relative
 - Any attacker cannot find out more about the connections of the uses by observing the system

4

* a-priori knowledge = a-posteriori knowledge

Terms

• Unobservability

- The items of interests are protected
- The use or non-use of any service cannot be detected by an observer (attacker)

Pseudonymity

- is the use of pseudonyms as IDs
- preserves accountability and trustability while preserving anonymity

Peer-to-Peer-Networks with Anonymity

Freenet

- 2000: Clarke, Oskar Sandberg, Brandon Wiley, Theodore Hong
- FreeHaven
 - 2000: Dingledine, Michael Freedman, David Molnar, Brian Sniffen und Todd Kamin
- aChord
 - 2002: Hazel, Wiley
- GnuNet
 - 2003: Bennett, Grothoff

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer Peer-to-Peer Networks

Cryptography in a Nutshell

Steganography

- is the art and science to secretly store information or transmit information
- Goals
 - hide messages
 - check originality or source
- Examples
 - small, invisible changes of pictures, audio-files, videos
 - e.g. change of the the least significant bit
 - micro-dots

Advantages

• the transmission of data is completely hidden

Disadvantages

- considerable overhead
- e.g. 0.5% hidden data if the least significant bit of audio transmission is used

• Caution!

- adding a file into an ignored area of another file is NOT steganography
 - e.g. add file to zip-file, jpg-file, etc.
- since this tampering can be easily discovered

Symmetric Cryptography

- This is the classic cryptography
 - and only known way up to the 1960s
- Components:
 - Secret key S
 - Document T
 - Encryption function f:
 - encrypts document T to code C using key S:
 - C = f(S,T)
 - Decryption function g:
 - decrypts code C to document T using key S
 - T = f(S,C)

- It is important that the secret key is only known by the sender and receiver
- Examples:
 - Ceasar's code
 - Enigma
 - DES (digital encryption standard)
 - AES (advanced encryption standard)
- If P = NP then all symmetric (pol.computable) codes can be broken
 - since this question is open, there is no provable secure cryptographic function
 - yet some encoding systems can be broken (e.g. Ceasar or Enigma)

Public-Key Cryptography

- Developed by
 - Diffie, Hellman, Rivest, Shamir, Adleman
- Components:
 - Secret key S
 - known only to the receiver of a message
 - Public key P
 - known to everybody
 - Document T
 - Encryption function f:
 - encrypts document T to code C using public key P:
 - C = f(P,T)
 - everybody can compute this function

- Decryption function g:
 - decrypts code C to document T using secret key S
 - T = g(S,C)
- It is important that the secret key is only known by the receiver
- Examples:
 - RSA
 - El-Gamal
- If P = NP then all such codes can be broken
 - again no provable secure public-key cryptographic systems, only candiates

Rivest, Shamir, Adleman

Secret key:

- two large prime numbers p and q, and a number d< pq which is no multiple of p or q
- Public key
 - product n = p q
 - e = d⁻¹ mod (p-1)(q-1)

Message M

- is interpreted as number M<n which is no multiple of p and q
- for this, longer messages can be partitioned in to a series of smaller messages

- a fixed offset can be added to each message, then the case of p|M (p divides M) or q|M occurs with extremely small probability
- Encoding function f:
 - C = T^e mod n
- Decoding function g:
 - $T = C^d \mod n$
- Computation is correct because of Euler's Theorem
 - $x^{\phi(n)} \mod n = 1$, if gcd(x,n) = 1
 - Euler's totient function $\phi(n) = (p_1-1) p_1^{e_1-1} \dots (p_k-1) p_k^{e_k-1} e_k$
 - if $n = p_1 e_1 p_2 e_2 \dots p_k e_k$ for prime numbers p_1, p_2, \dots, p_k

Elgamal Code

- Private key
 - random exponent $x \in \{0,...,p-1\}$
- Public key
 - prime number p
 - a generator g
 - $h = g^x \mod p$
- Message T
 - is in the set {2,..., p-1}
- Encryption
 - choose random number y
 - compute $c_1 = g^y \mod p$
 - compute $c_2 = h^y T \mod p$
 - publish (c₁,c₂)

• Decoding function g:

$$T = \frac{c_2}{(c_1)^x}$$

- Security
 - depends on the in-feasibility of computing the discrete logarithm module a prime number

Peer-to-Peer-Networks

Electronic Signatures

- Given a message T
- The signer produces compressed text
 K
 - K = h(T)
 - using a cryptographic secure hash function, like
 - MD5, SHA-1, SHA-2
 - computes signature G = g(S,K) using his secret key S
 - T, h, and public key P corresponding to S are published
- Every user can check
 - h(T) = K = f(P,G)

- This is only an example of an electronic signature
 - under certain attacks such codes can fail,
 - e.g. when used with RSA, if the signer does not create new keys
- There are yet unbroken electronic signature schemes at hand,
 - e.g. Goldwasser, Micali, Rivest "An signature scheme secure against adaptive chosen message attack"

Usability of Encrypted Data

- Peers may store encrypted files
 - the peer does not know the original text
 - the file is encrypted by the author
- In addition the file may be signed
 - for pseudonomity
 - only the author can change or revoke files
- A reader may read the file
 - when the authors commits his secret key (on a different path)
 - or the peer looking up the information can deduct this secret key from his search key
 - the author remains safe

- Advantage
 - the storage peer cannot be convicted for the contents he stores
- Disadvantage
 - the storage peer may possess fake data
 - to delete or not delete

Peer-to-Peer Networks End of 8th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008