

Peer-to-Peer Networks

Fast Download

11th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

Mittwoch, 9. Juli 2008

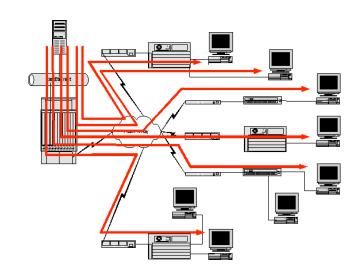
Peer to Peer Networks

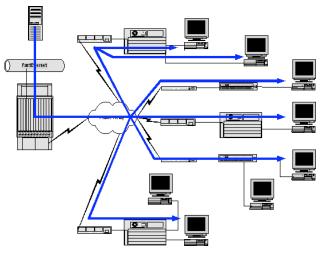
Fast Download

Mittwoch, 9. Juli 2008

IP Multicast

Motivation


 Transmission of a data stream to many receivers


Unicast

- For each stream message have to be sent separately
- Bottleneck at sender

Multicast

- Stream multiplies messages
- No bottleneck

Peter J. Welcher

www.netcraftsmen.net/.../ papers/multicast01.html

Peer-to-Peer-Networks Summer 2008 3

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

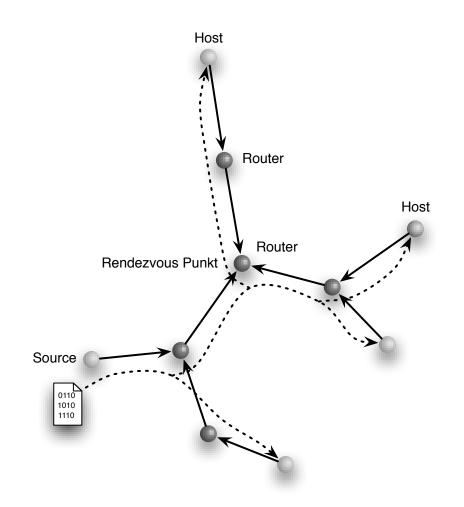
Working Principle

- IPv4 Multicast Addresses
 - class D
 - outside of CIDR (Classless Interdomain Routing)
 - 224.0.0.0 239.255.255.255
- Hosts register via IGMP at this address
 - IGMP = Internet Group Management Protocol
 - After registration the multicast tree is updated
- Source sends to multicast address
 - Routers duplicate messages
 - and distribute them into sub-trees
- All registered hosts receive these messages

- ends after Time-Out
- or when they unsubscribe
- Problems
 - No TCP only UDP
 - Many routers do not deliver multicast messages
 - solution: tunnels

Routing Protocols

Distance Vector Multicast Routing Protocol (DVMRP)

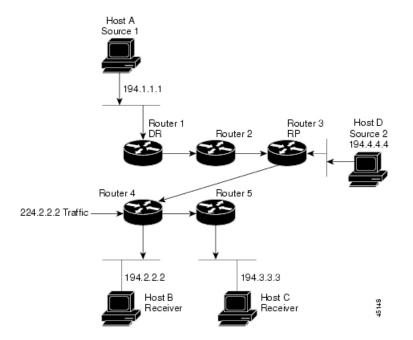

- used for years in MBONE
 - particularly in Freiburg
- own routing tables for multicast

Protocol Independent Multicast (PIM)

- in Sparse Mode (PIM-SM)
- current (de facto) standard
- prunes multicast tree
- uses Unicast routing tables
- is more independent from the routers

Prerequisites of PIM-SM:

- needs Rendezvous-Point (RP) in one hop distance
- RP must provide PIM-SM
- or tunneling to a proxy in the vicinity of the RP


Peer-to-Peer-Networks Summer 2008

5

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

PIM-SM Tree Construction

- Host A Shortest-Path-Tree
- Shared Distribution Tree

Host A Source

194.1.1.1

Router 1 Router 2 Router 3

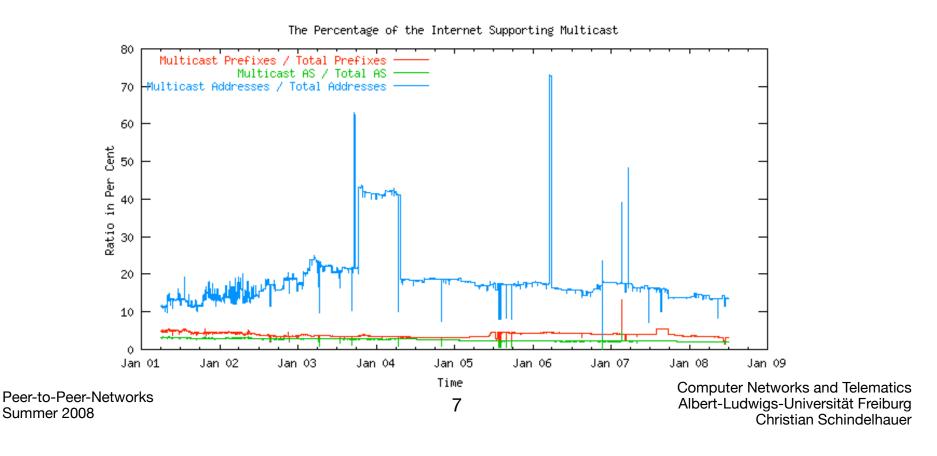
224.1.1.1 Traffic

Router 4 Router 5

194.2.2.2

Host B Receiver

Receiver


From Cisco: http://www.cisco.com/en/US/ products/hw/switches/ps646/ products_configuration_guide_chapter09186a0 08014f350.html

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics
Albert-Ludwigs-Universität Freiburg
Christian Schindelhauer

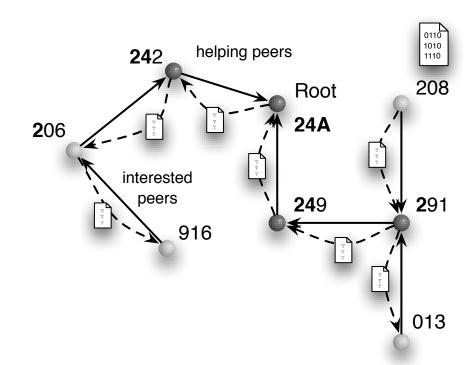
6

IP Multicast Seldomly Available

- IP Multicast is the fastest download method
- Yet, not many routers support IP multicast
 - http://www.multicasttech.com/status/

Mittwoch, 9. Juli 2008

Why so few Multicast Routers?


- Despite successful use
 - in video transmission of IETFmeetings
 - MBONE (Multicast Backbone)
- Only few ISPs provide IP Multicast
- Additional maintenance
 - difficult to configure
 - competing protocols
- Enabling of Denial-of-Service-Attacks
 - Implications larger than for Unicast
- Transport protocol
 - only UDP
 - Unreliable
 - Forward error correction necessary
 - or proprietary protocols at the routers (z.B. CISCO)

Market situation

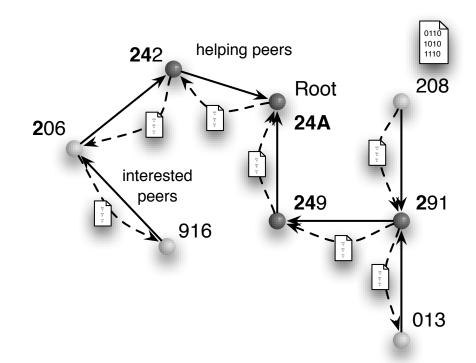
- consumers seldomly ask for multicast
 - prefer P2P networks
- because of a few number of files and small number of interested parties the multicast is not desirable (for the ISP)
 - small number of addresses

Scribe & Friends

- Multicast-Tree in the Overlay Network
- Scribe [2001] is based on Pastry
 - Castro, Druschel, Kermarrec, Rowstron
- Similar approaches
 - CAN Multicast [2001] based on CAN
 - Bayeux [2001] based on Tapestry
- Andere Ansätze
 - Overcast ['00] and Narada ['00]
 - construct multi-cast trees using unicast connections
 - do not scale

How Scribe Works

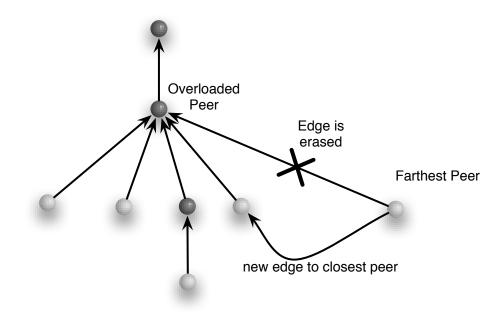
Create


GroupID is assigned to a peer according to Pastry index

Join

- Interested peer performs lookup to group ID
- When a peer is found in the Multicast tree then a new sub-path is inserted

Download


- Messages are distributed using the multicast tree
- Nodes duplicate parts of the file

Scribe Optimization

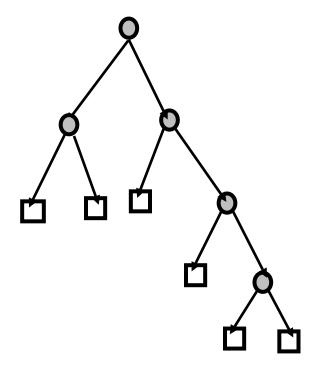
Bottleneck-Remover

- If a node is overloaded then from the group of peers he sends messages
- Select the farthest peer
- This node measures the delay between it and the other nodes
- and rebalances itself under the next (then former) brother

Split-Stream Motivation

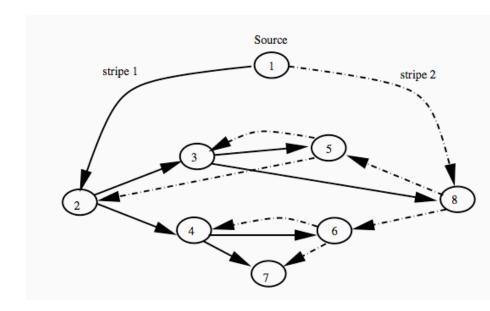
Multicast trees discriminate certain nodes

Lemma


 In every binary tree the number of leaves = number of internal nodes +1

Conclusion

- Nearly half of the nodes distribute data
- While the other half does not distribute any data
- An internal node has twice the upload as the average peer
- Solution: Larger degree?
- Lemma
 - In every node with degree d the number of internal nodes k und leaves b we observe


$$- (d-1) k = b-1$$

- Implication
 - Less peers have to suffer more upload

Split-Stream

- Castro, Druschel, Kermarrec, Nandi, Rowstron, Singh 2001
- Idea
 - Partition a file of size into k small parts
 - For each part use another multicast tree
 - Every peer works as leave and as distributing internal tree node
 - except the source
- Ideally, the upload of each node is at most the download

Bittorrent

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - concentrates on download
 - uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - efficient download of a file using the uploads of all participating peers
 - · efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL

- fairness among peers
 - seeders against leeches
- usage of several sources

Bittorrent Coordination and File

Central coordination

- by tracker host
- for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information
- tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences

File

- is partitions in smaller pieces
 - as describec in tracker file

- every participating peer can redistribute downloaded parts as soon as he received it
- Bittorrent aims at the Split-Stream idea

Interaction between the peers

- two peers exchange their information about existing parts
- according to the policy of Bittorrent outstanding parts are transmitted to the other peer

Bittorrent Part Selection

Problem

- The Coupon-Collector-Problem is the reason for a uneven distribution of parts
 - if a completely random choice is used

Measures

- Rarest First
 - Every peer tries to download the parts which are rarest
 - density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download

- Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - especially when peers only shortly join
- Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - then a slow peer can not stall the last download

Bittorrent Policy

Goal

- self organizing system
- good (uploading, seeding) peers are rewarded
- bad (downloading, leeching) peers are penalized

Reward

- good download speed
- un-choking

Penalty

Choking of the bandwidth

Evaluation

 Every peers Peers evaluates his environment from his past experiences

Bittorrent Choking

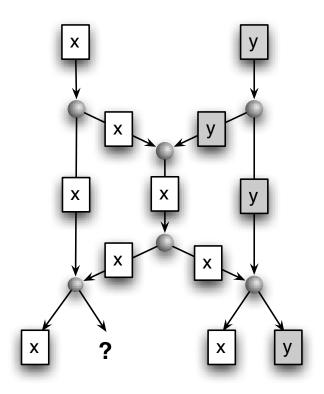
Every peer has a choke list

- requests of choked peers are not served for some time
- peers can be unchoked after some time

Adding to the choke list

- Each peer has a fixed minimum amount of choked peers (e.g.
 4)
- Peers with the worst upload are added to the choke list
 - and replace better peers

Optimistic Unchoking

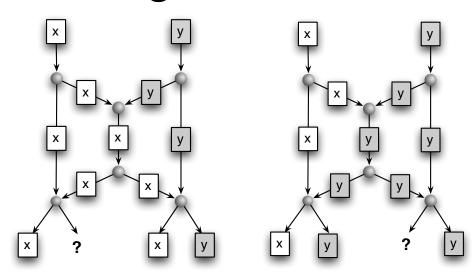

- Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

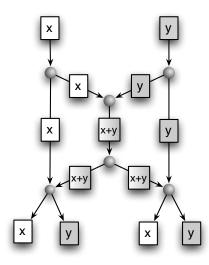
Network Coding

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

Example

- Bits x and y need to be transmitted
- Every line transmits one bit
- If only bits are transmitted
 - then only x or y can be transmitted in the middle?
- By using X we can have both results at the outputs




Network Coding

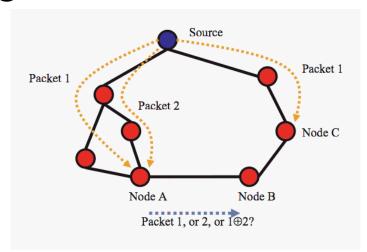
R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

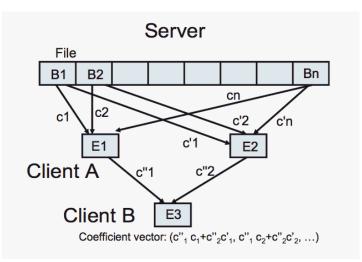
Theorem [Ahlswede et al.]

 There is a network code for each graph such that each node receives as much information as the maximum flow of the corresponding flow problem

Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Practical Network Coding Avalanche


 Christos Gkantsidis, Pablo Rodriguez Rodriguez, 2005


Goal

- Overcoming the Coupon-Collector-Problem
 - a file of m parts can be always reconstructed if at least m network codes have been received
- Optimal transmission of files within the available bandwidth

Method

- Use codes as linear combinations of a file
 - Produced code contains the vector and the variables
- During the distribution the linear combination are re-combined to new parts
- The receiver collects the linear combinations
- and reconstructs the original file using matrix operations

Computer Networks and Telematics
Albert-Ludwigs-Universität Freiburg
Christian Schindelhauer

Peer-to-Peer-Networks Summer 2008

21

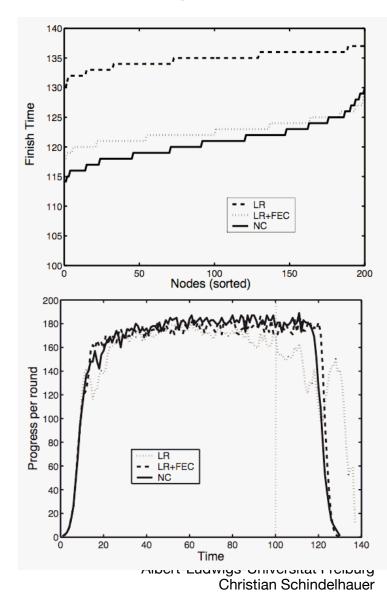
Mittwoch, 9. Juli 2008 21

Coding and Decoding

- File: $\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_m}$ Codes: $\mathbf{y_1}, \mathbf{y_2}, ..., \mathbf{y_m}$ $(r_{i1}r_{i2} \dots r_{im}) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x \end{pmatrix} = y_i$
- Random Variables r_{ii}

$$\left(egin{array}{ccc} r_{11} & \dots & r_{1m} \ dots & \ddots & dots \ r_{m1} & \dots & r_{mm} \end{array}
ight) \cdot \left(egin{array}{c} x_1 \ dots \ x_m \end{array}
ight) = \left(egin{array}{c} y_1 \ dots \ y_m \end{array}
ight)$$

If the matrix is invertable then


$$\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} r_{11} & \dots & r_{1m} \\ \vdots & \ddots & \vdots \\ r_{m1} & \dots & r_{mm} \end{pmatrix}^{-1} \cdot \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}_{\substack{\text{rks and Telematics} \\ \text{Albert-Ludwigs-Universität Freiburg} \\ \text{Christian Schindelhauer}}$$

Mittwoch, 9. Juli 2008

Speed of Network-Coding

Comparison

- Network-Coding (NC) versus
- Local-Rarest (LR) and
- Local-Rarest+Forward-Error-Correction (LR+FEC)

Peer-to-Peer-Networks Summer 2008

23

Mittwoch, 9. Juli 2008 23

Problems of Network-Coding

Overhead of storing of variables

- per block one variable vector
- e.g. 4 GB file with 100 kB blocks
 - 4 GB/100 KB = 40 kB
 - Overhead of 40%
- better: 4 GB und 1 MB-Block
 - 4kB Overhead = 0,4%

Overhead of Decoding

- Inversion of a m x m- Matrix needs time O(m³)
- Read/Write Accesses
 - For writing m blocks each part must be read m times
 - Disk access is much slower than memory access

Peer-to-Peer Networks

End of 11th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008

Mittwoch, 9. Juli 2008 25