

Peer-to-Peer Networks Game Theory 12th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008 Peer to Peer Networks

Game Theoretic Aspects

Literature

- Feldman, Chuang "Overcoming Free-Riding Behavior in Peer-to-Peer Systems", 2005
- Feldman, Lai, Stoica, Chuang, "Robust Incentive Techniques for Peer-to-Peer Networks", 2004
- Shneidman, Parkes, "Rationality and Self-Interest in Peer to Peer Networks"

Motivation

Traditional system design

- assume obedient users
- follow specific protocol without consideration
- classes of nodes:
 - correct/obedient
 - faulty
 - * fail-stop
 - * message dropping
 - * Byzantine failure

▶ P2P

- have rational users
- maximize own utility
- may deviate from the protocol
- classes of nodes
 - rational
 - * optimize own utility
 - can include "tricky" behavior
 - irrational
 - * altruistic
 - * malign cheating

Peer-to-Peer-Networks Summer 2008

Examples

Gnutella

- study by Adar & Huberman 2000
 - ~70% of peers provide no files (free-riders)
 - top 1% provide 37% of all files
- similar patterns in studies of Napster
- in 2005: 85% of all Gnutella users are free-riders

Selfish Behavior in P2P

Reasons

- Psychology of users
- Lack of central authority
- Highly dynamic memberships
- Availability of cheap identities
- Hidden or untraceable actions
- Deceitful behavior
- Implications
 - Success of P2P networks must take into account economic behavior of users

Typical Features of Peer to Peer Systems

Social dilemma

• defective behavior (not uploading) is rational behavior, i.e. maximise the utility

Asymmetric transactions

- a peer wants a service
- another provides this service

Untraceable defections

- it is not clear which peer declines a service
- Dynamic population
 - peers change the behavior
 - peers enter and leave the system

Incentives for Cooperation

- Inherent generosity
- Monetary payment schemes
- Reciprocity-based schemes

Inherent Generosity

Standard model of behavioral economics

- based on purely self-interest
- does not explain all behavior of people
- User generosity has a great impact on existing peerto-peer systems
 - can be determined analytically

Monetary Payment Schemes

- Golle, Leyton-Brown, Mironov, Lillibridge 2001, "Incentives for Sharing in peer-to-peer Networks"
 - consider free-rider problem in Napster
 - assume selfish behavior
 - if all peers are selfish this leads to the strict Nash equilibrium
 - introduce micro-payment system to overcome this problem
 - encourage positive behavior by virtual money

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Basics of Game Theory

•	 Prisoner's dilemma (Flood&Drescher 1950) two suspects arrested if one testifies and the other remains silent then the witness is released the other serves 10 years prison 		A talks	A is silent
	 if both testify then both serve 5 years prison if no one testify then they receive 1/2 year prison 	B talks	A: -5 B: -5	A: -10 B: 0
	 no one testifies 			
•	 Nash equilibrium for a constant choice of the other party each player optimizes his benefit if both talk then there is a Nash equilibrium 	B is silent	A: 0 B: -10	A: -1/2 B: -1/2

Dominant Strategy

 Dominant strategy a strategy is dominant if it is always better than every other strategy in the prisoner's dilemma every player has a dominant strategy 		A talks	A is silent
 talk! Nash equilibrium for a constant choice of the other party each player optimizes his benefit if both talk then there is a Nash equilibrium is not necessary Pareto-optimal 	B talks	A: -5 B: -5	A: -10 B: 0
	B is silent	A: 0 B: -10	A: -1/2 B: -1/2

Prisoner's Dilemma of Peer to Peer Filesharing

 Rational strategy for downloading peer: Download Rational strategy for uploading peer: Don't upload 		U: Peer uploads	U: Peer rejects upload
 Nash equilibrium Uploader rejects upload for	D: Peer	D: 10	D: 0
downloader	downloads	U: -1	U: 0
	D: Peer does	D: 0	D: 0
	not download	U: 0	U: 0

Monetary Payment Schemes

Advantage

- allow to use economic mechanisms
- charge free-riders for misbehavior

Disadvantage

- require infrastructure for accounting and micropayments
- Major problems
 - how to encourage truthful relevation of costs
 - solution: Vickrey-Clarke-Groves (VCG-mechanisms)
 - strategyproof mechanism
 - encourage truthful revelation in dominant strategies

- how to encourage cooperate behavior despite hidden actions
 - information asymmetry
 - use contracts
- how to deliver the payment
 - e.g. the deliverer also receives some part of the payment

Mechanism Design

Define rules of the games

- such that rational behavior is good behavior
 - e.g. auction system: second best wins
- Inverse game theory
 - how to design the rules such that the desired outcome occurs
 - provide incentives
- Obedient center
 - the rule system must be enforced on all the nodes
 - altruistic rule maker

- central control or distributed software control mechanism or cryptography
- Mechanism design can be computationally hard
 - calculating the optimal strategy can be difficult
 - not all the information may be available to each player
 - finding the best rule system poses an even more difficult problem
- Algorithmic Mechanism Design
 - Mechanism is carried out via a distributed computation

Reciprocity based Schemes

Reciprocity based schemes

- Users maintain histories of past behavior of other users
- used for decision making

Direct-reprocity scheme

- A decides how to serve user B based solely on the service that B has provided
- e.g. Bittorrent
- still possibilities for manipulation
- Indirect-reciprocity scheme
 - aka. reputation based schemes
 - more scalable for
 - large population sizes
 - highly dynamic memberships

- infrequent repeat transactions

Problems

- How to treat newcomers?
 - whitewashing attacks
 - irreplacable pseudonyms
 - penalty for newcomers
- Indirect reciprocity is vulnerable to deceits, false accusations & false praises
 - sybil attacks
 - sybilproofness

Reciprocative Decision Functions

- Discriminating Server Selection
 - use history records to choose partners
- Shared history
 - communicate the history with other peers
 - problem: false praise or false accusations
- Subjective reputation
 - e.g. max-flow algorithm that collects the reputation be the combination of history of other users
 - e.g. page-rank algorithm

- Adaptive stranger policy
 - treat strangers like the previously seen strangers
 - arrest usual suspects only if the crime rate is high
- Short-term history
 - long history records allow peers to gather reputation and then turn into traitors
 - short-term history records will discipline all peers

Peer-to-Peer-Networks Summer 2008

Future Research Directions

- How to overcome the prisoner's dilemma
 - game theory the right tool?
- What is rational behavior?
 - Is Nash equilibrium the right model
- Influence of different user behavior
 - different grades of selfishness or altruism
- Contracts can lead to desired behavior of peers
 - computational complexity of optimal contracts unknown

PeerTrust

- Xiong, Liu, "PeerTrust: Supporting Reputation-Based Trust for Peer-to-Peer Electronic Communities"
- suggest mechanism for reputation based trust management
- concentrate on trust not on the networks

Trust Parameters

- Feedback a peer obtains from other peers
- Feedback scope
 - total number transactions a peer has with other ones
- Credibility factor of the feedback source
- Transaction context factor
 - for discriminating mission-criticial transaction from less critical ones
- Community context factor
 - for addressing community-related characteristics and vulnerabilities

Trust Metric

- I(u,v): total number of transactions between peer u and v
- I(u): total number of transactions performed by u with all other peers
- S(u,i): normalized amount of satisfaction peer u receives from p(u,i) in its i-th transaction
- Cr(v): credibility of the feedback submitted byv
- TF(u,i): adaptive transaction context factor for peer's u's i-th transaction
- CF(u) denotes the adaptaive community context factor
- α , β are normalizing factors

$$T(u) = \alpha * \sum_{i=1}^{I(u)} S(u,i) * Cr(p(u,i)) * TF(u,i) + \beta * CF(u),$$

Peer-to-Peer-Networks Summer 2008 Computer Networks and Telematics Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

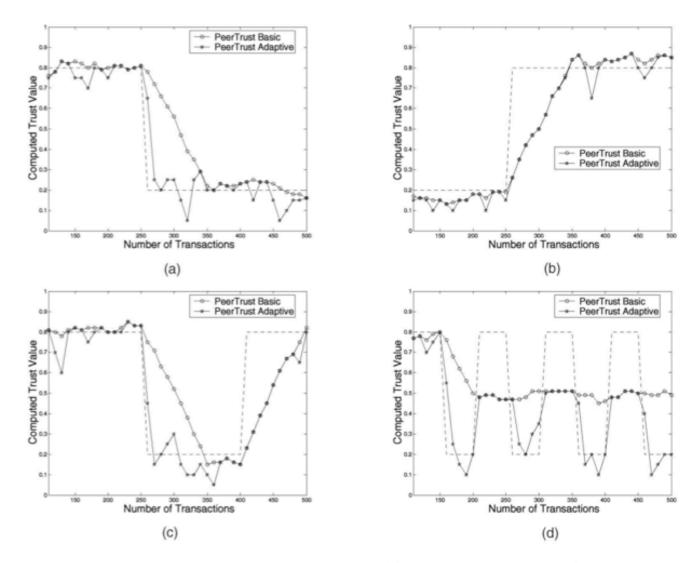


Fig. 5. Effectiveness against dynamic personality and reputation oscillation. (a) Peer milking reputation. (b) Peer building reputation. (c) Peer oscillating reputation. (d) Peer oscillating reputation.

Peer-to-Peer Networks End of 12th Week

Albert-Ludwigs-Universität Freiburg Department of Computer Science Computer Networks and Telematics Christian Schindelhauer Summer 2008