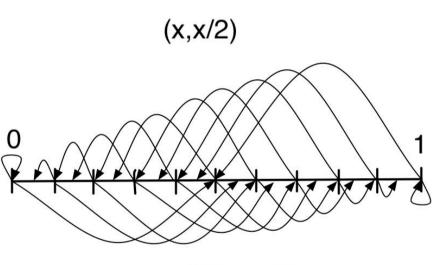


Peer-to-Peer Networks 8. Distance-Halving


Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

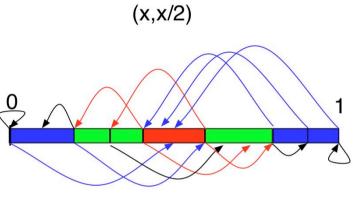
BURG

ZW

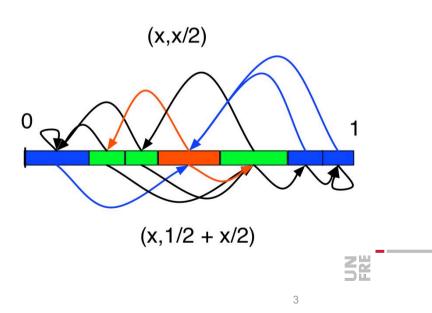
A Continuous Graphs Freiburg

- Distance Halving
 - Moni Naor Udi Wieder, 2003
- Continuous graphs
 - Infinite set of nodes
 - Infinite set of edges
- Underlying graph
 - $x \in [0,1)$
 - Edges:
 - Left edges: (x,x/2)
 - Right edges: (x,1+x/2)
 - Plus opposing edges
 - (x/2,x)
 - (1+x/2,x)

(x, 1/2 + x/2)



Transition from the Continuous to the **Discrete** Case Freiburg

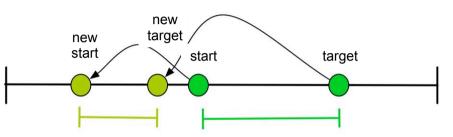

Consider discrete partitions of the continuous node set

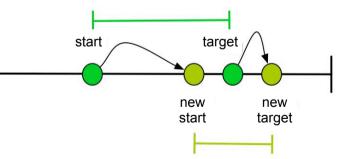
CoNe

- Insert edge from partition A to B
 - if there exists $x \in A$ and $y \in B$ such that (x,y) is an edge of the continuous graph
 - Partitions are constructed by halving larger partitions
- The degree is constant if
 - the ratio of the sizes of largest and smallest intervals are constant
- Can be achieved using a technique, called *multiple choice* principle

(x, 1/2 + x/2)

A Features of Distance-Halving


- Peers correspond to partitions
- Links correspond to edges
 - In additions neighbored partitioned are linked
- In- and out-degree are constant
 - The largest partition has length of at most 2/n w.h.p.
 - The smallest partition has length of at least 1/(2n) w.h.p.


4

The diameter is logarithmic

A Lookup in Distance-Halving

- Using left edges the distance between start and target is halved
 - Follow the left edges for 2+log n hops
 - Then the target is a neighbored partition
 - Then the backward left edges are used to get to the target
- Works also using right edges
- Lemma
 - Lookup needs 2 log n + O(1) hops and messages

UNI FREIBURG

- Left and right edges can be used in any combination
- Analog to Valiant's routing result for relieving congestion on the hyper-cube one can shoe
 - The Congestion is bounded by O(log n) w.h.p.,
 - i.e. each peer has to deliver at most O(log n) packets if each peer is the start and target of at most one lookup

CoNe Freiburg

Insertion of Peers in Distance-Halving

- Use Principle of multiple choice, i.e.
 - test c log n random partitions
 - choose the largest partition
 - and halve this partition
- Update neighbor links
- Update left and right forward and backward edges
 - using the routing information of the neighbors
- Lemma
 - Insertion of a peer in Distance-Halving needs at most O(log² n) steps and messages.

A Distance-Halving

- Simple and efficient P2P-Network
 - Degree O(1)
 - Diameter O(log n)
 - Load balancing
 - Lookup O(log n)
 - Insertion O(log²n)
- Principle of continuous graph is also used in other peer-to-peer networks
 - Chord
 - Koorde
 - ViceRoy
- Here, formalized for the first time

A Principle of Multiple Choice

- For insertion every peer randomly chooses c log n intervals
- The peer chooses the largest interval and halves it
- Lemma
 - W.h.p. the interval size is at most a constant factor larger of smaller than the average size.

A Principle of Multiple Choice

Lemma

- After insertion of n=2^k peers the interval sizes are 1/(2n), 1/n or 2/n whp.
- Proof
 - 1. part: Whp there is no interval larger than 2/n
 - Use the following lemma*
 - Lemma*
 - Let c/n be the largest interval. Then after insertion of 2n/c peers all intervals are at most c/(2n) whp.
 - Apply this lemma for c= n/2,n/4, ...,4

A Principle of Multiple Choice

Lemma

- After insertion of n=2^k peers the interval sizes are 1/(2n), 1/n or 2/n whp.
- Proof
 - 2. part: Whp. there is no smaller interval than 1/(2n) entstehen
 - Such an interval can be chosen with probability of at most 1/2
 - The probability that c log n intervals repeatedly hit such an interval is at most

$$2^{-c\log n} = n^{-c}$$

11

BURG

Peer-to-Peer Networks 8. Distance-Halving

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

ZW