

Peer-to-Peer Networks 10 Anonymity

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

- Society
 - Free speech is only possible if the speaker does not suffer negative consequences
 - Thus, only an anonymous speaker has truly free speech
- Copyright infringement
 - Copying items is the best (and most) a computer can do
 - Copyright laws restrict copying
 - Users of file sharing systems do not want to be penalized for their participation or behavior
- Dictatorships
 - A prerequisite for any oppressing system is the control of information and opinions
 - Authors, journalists, civil rights activists like all citizens should be able to openly publish documents without the fear of penalty
- Democracies
 - In many democratic states certain statements or documents are illegitimate, e.g.
 - (anti-) religious statements
 - insults (against the royalty)
 - certain sexual contents
 - political statements (e.g. for fascism, communism, separation, revolution)
- A anonymizing P2P network should secure the privacy and anonymity of each user without endangering other users

From

- Danezis, Diaz, A Survey of Anonymous Communication Channels
- Pfitzmann, Hansen, Anonymity, Unobservability and Pseudonymity A Proposal for Terminology
- Anonymity (Pfitzmann-Hansen 2001)
 - describes the state of being not identifiable within a larger set of subjects (peers), i.e.
 - the anonymity set
 - The anonymity set can be all peers of a peer-to-peer network
 - yet can be another (smaller or larger) set

Unlinkability

- Absolute (ISO15408)
 - "ensures that a user may make multiple uses of resources or services without other being able to link these uses together."
- Relative
 - Any attacker cannot find out more about the connections of the uses by observing the system

BURG

4

- a-priori knowledge = a-posteriori knowledge

- Unobservability
 - The items of interests are protected
 - The use or non-use of any service cannot be detected by an observer (attacker)
- Pseudonymity
 - is the use of pseudonyms as IDs
 - preserves accountability and trustability while preserving anonymity

- Denial-of-Service Attacks
 (DoS)
 - or distributed denial of service attacks (DDoS)
 - one or many peers ask for a document
 - peers are slowed down or blocked completely
- Sybil Attacks
 - one attacker produces many fake peers under new IP addresses
 - or the attacker controls a bot-net
- Use of protocol weaknesses
- Infiltration by malign peers
 - Byzantine Generals

- Timing attacks
 - messages are slowed down
 - communication line is slowed down
 - a connection between sender and receiver can be established
- Poisoning Attacks
 - provide false information
 - wrong routing tables, wrong index files etc.
- Eclipse Attack
 - attack the environment of a peer
 - disconnect the peer
 - build a fake environment

JNI REIBURG

Cryptography in a Nutshelf

- Symmetric Cryptography
 - AES
 - Affine Cryptosystems
- Public-Key Cryptography
 - RSA
 - ElGamal
- Digital Signatures
- Public-Key-Exchange
 - Diffie-Hellman

Interactive Proof Systems

- Zero-Knowledge-Proofs
- Secret Sharing
- Secure Multi-Party Computation

7

UNI FREIBURG

- Geroge Blakley, 1979
- Task
 - n persons have to share a secret
 - only when k of n persons are present the secret is allowed to be revealed
- Blakley's scheme
 - in a k-dimensional space the intersection of k non-parallel k-1-dimensional spaces define a point
 - this point is the information
 - with k-1 sub-spaces one gets only a line
- Construction
 - A third (trusted) instance generate for a point n in R^k k nonparallel k-1-dimensional hyper-spaces

CoNe Freiburg

Shamir's Secret Sharing Systems

- Adi Shamir, 1979
- Task
 - n persons have to share a secret s
 - only k out of n persons should be able to reveal this secret
- Construction of a trusted third party
 - chooses random numbers a1,...,ak-1
 - defines

 $f(x) = s + a_1 x + a_2 x^2 + \ldots + a_{k-1} x^{k-1}$

- chooses random $x_1, x_2, ..., x_n$
- sends (x_i,f(x_i)) to player i
- If k persons meet
 - then they can compute the function f by the fundamental theorem of algebra

- a polynomial of degree d is determined by d+1 values
- for this they exchange their values and compute by interpolation
 - (e.g. using Lagrange polynoms)
- If k-1 persons meet
 - they cannot compute the secret at all
 - every value of s remains possible
 - Usually, Shamir's and Blakley's scheme are used in finite fields
 - i.e. Galois fields (known from CRC)
 - this simplifies the computation and avoids rounding errors in the context of floating numbers

UNI FREIBURG

A Dining Cryptographers Freiburg

- Anonymous publications without any tracing possibility
- $n \ge 3$ cryptographers sit at a round table
 - neighbored cryptographers can communicate secretly
- Each peer chooses secret number x_i and communicates it to the right neighbor
- If i wants to send a message m
 - he publishes $s_i = x_i x_{i-1} + m$
- else
 - he publishes $s_i = x_i x_{i-1}$
- Now they compute the sum s=s₁+...+s_n
 - if s=0 then there is no message
 - else the sum of all messages

- All peers
 - publish the public keys
 - are known in the network
- The sender p₁ now chooses a route
 - $p_1, r_1, r_2, r_3, ..., p_2$
- The sender encrypts m according to the public keys from
 - p₂, ... r₃, r₂, r₁
 - and sends the message
 - $f(pk_{k1}, (r_{2,}f(pk_{r2}...f(pk_{rk}, (p_{2}, f(pk_{p2}, m)))...)))))$
 - to r₁

. . .

- r₁ encrypts the code, deciphers the next hop r₂ and sends it to him
- until p₂ receives the message and deciphers it

IBURG

- No peer on the route
 - knows its position on the route
 - can decrypt the message
 - knows the final destination
- The receiver does not know the sender
- In addition peers may voluntarily add detour routes to the message
- Chaum's Mix Cascades
 - aka. Mix Networks or Mixes
 - is safe against all sort of attacks,
 - but not against traffic analysis

TOR - Onion Routers

- David Goldschlag, Michael Reed, and Paul Syverson, 1998
- Goal
 - Preserve private sphere of sender and receiver of a message
 - Safety of the transmitted message
- Prerequisite
 - special infrastructure (Onion Routers)
 - all except some smaller number of exceptions cooperate
- Method
 - Mix Cascades (Chaum)
 - Message is sent from source to the target using proxies (Onion Routers)

- Onion Routers unpredictably choose other routers as intermediate routers
- Between sender, Onion Routers, and receiver the message is encrypted using symmetric cryptography
- Every Onion Router only knows the next station
- The message is encoded like an onion
- TOR is meant as an infrastructure improvement of the Internet
 - not meant as a peer-to-peer network
 - yet, often used from peer-to-peer networks

13

INI

Crowds

- Reiter & Rubin 1997
- anonymous web-surfing based on Onion Routers
- Hordes
 - Shields, Levine 2000
 - uses sub-groups to improve Onion Routing
- Tarzan
 - Freedman, 2002
 - A Peer-to-Peer Anonymizing Network Layer
 - uses UDP messages and Chaum Mixes in group to anonymize Internet traffic
 - adds fake traffic against timing attacks

- Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore Hong, 2000
- Goal
 - peer-to-peer network
 - allows publication, replication, data lookup
 - anonymity of authors and readers
- Files
 - are encoding location independent
 - by encrypted and pseudonymously signed index files
 - author cannot be identified
 - are secured against unauthorized change or deletion
 - are encoded by keys unknown by the storage peer
 - secret keys are stored elsewhere
 - are replicated
 - on the look up path
 - and erased using "Least Recently Used" (LRU) principle

BURG

- Network Structure
 - is similar to Gnutella
 - Free-Net is like Gnutella Pareto distributed
- Storing Files
 - Each file can be found, decoded and read using the encoded address string and the signed subspace key
 - Each file is stored together with the information of the index key but without the encoded address string
 - The storage peer cannot read his files
 - unless he tries out all possible keywords (dictionary attack)
- Storing of index files
 - The address string coded by a cryptographic secure hash function leads to the corresponding peer
 - who stores the index data
 - address string
 - and signed subspace key
 - Using this index file the original file can be found

16

REIBURG

Lookup

- steepest-ascent hill-climbing
 - lookup is forwarded to the peer whose ID is closest to the search index
- with TTL field
 - i.e. hop limit
- Files are moved to new peers
 - when the keyword of the file is similar to the neighbor's ID
- New links
 - are created if during a lookup close similarities between peer IDs are discovered

UNI FREIBURG

- Network structure of Free-Net is similar to Gnutella
- The lookup time is polynomial on the average

Figure 2. Degree distribution among Freenet nodes. The network shows a close fit to a power-law distribution.

Figure 3. Request path length versus network size. The median path length in the network scales as N^{0.28}.

BURG

A Dark-Net & Friend-to-Friend

- Dark-Net is a private Peer-to-Peer Network
 - Members can trust all other members
 - E.g.
 - friends (in real life)
 - sports club
- Dark-Net control access by
 - secret addresses,
 - secret software,
 - authentication using password, or
 - central authentication
- Example:
 - WASTE
 - P2P-Filesharing up to 50 members
 - by Nullsoft (Gnutella)
 - CSpace
 - using Kademlia

Peer-to-Peer Networks 10 Anonymity

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

