

Peer-to-Peer Networks

BURG

NI REII

11 Network Coding

Arne Vater

Technical Faculty Computer Networks and Telematics University of Freiburg

Network Flow

- How can network flow be optimized?
 - two data bits
 - x, y
 - two sender
 - S₁, S₂
 - two receiver
 - R₁, R₂
 - link capacity 1
 - deliver both bits to both receiver

2

Network Flow

Network Flow

- Simple transmission of bits allows maximal flow 3
 - minimal cut = 3
 - middle edge is bottleneck
- Can we do better?

Network Coding

- R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung
 - Network Information Flow, (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)
- Solution
 - Send Xor of x and y on the middle edge

Network Coding

- Theorem [Ahlswede et al.]
 - For each graph there exists a network code such that each sink can receive as many information as allowed by the maximum flow to that sink.

Linear Network Codes

- Koetter, Médard
 - Beyond Routing: An Algebraic Approach to Network Coding
- Goal
 - finding those codes for network coding
- Solution
 - linear combinations are sufficient for any network coding
 - even random linear combinations in Practical Network Coding for peer-to-peer networks

7

Application Areas

- Sattelite communication
 - preliminary work
- WLAN
 - Xor in the Air, COPE
 - simple network code improves network flow
- Ad hoc networks
- Sensor networks
- Peer-to-peer networks

Coding and Decoding

- Original message: $x_1, x_2, ..., x_n$ Code packets: $b_1, b_2, ..., b_n$ $(c_{i1}, ..., c_{in}) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = b_i$
- Random linear coefficient c_{ii}
- Thus

$$\left(\begin{array}{ccc}c_{11}&\ldots&c_{1n}\\\vdots&\ddots&\vdots\\c_{n1}&\ldots&c_{nn}\end{array}\right)\cdot\left(\begin{array}{c}x_{1}\\\vdots\\x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1}\\\vdots\\b_{n}\end{array}\right)$$

If matrix (c_{ii}) is invertible then:

$$\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right) = \left(\begin{array}{ccc} c_{11} & \dots & c_{1n}\\ \vdots & \ddots & \vdots\\ c_{n1} & \dots & c_{nn} \end{array}\right)^{-1} \cdot \left(\begin{array}{c} b_1\\ \vdots\\ b_n \end{array}\right)$$

Inverse of Random Matrix

- Theorem
 - If the values of an n n matrix are randomly chosen from a finite field with s elements, then the matrix is invertible with probability at least

$$1 - \sum_{i=1}^{n} \frac{1}{s^i}$$

- Problem
 - Numbers become larger with each calculation

Galois Fields

- Idea: Use Galois field GF[2^w]
 - efficient computation
 - power of two suits binary data representation
- GF[2^w] = finite field with 2^w elements
 - elements are binary strings with length w
 - 0 = 0^w identity element for addition
 - $1 = 0^{w-1}1$ identity element for multiplication
- u + v = bit-wise Xor
 - i.e. 0101 + 1100 = 1001
- a · b = polynom product modulo an irreducible polynom and modulo 2
 - i.e. $(a_{w-1}...a_1a_0)(b_{w-1}...b_1b_0) = ((a_0 + a_1x + ... + a_{w-1}x^{w-1}) (b_0 + b_1x + ... + b_{w-1}x^{w-1}) \mod q(x)) \mod 2$

 $q(x) = x^2 + x + 1$

generating element of GF[4]	polynomial in GF[4]	binary representation in GF[4]	decimal representation
0	0	00	0
X 0	1	01	1
X ¹	X	10	2
X ²	x + 1	11	3

- Why is x² = x + 1?
 - $q(x) = x^2 + x + 1$

$x^2 \mod x^2 + x + 1 =$

CoNe Freiburg

Example: GF[2²]

+	0 = 00	1 = 01	2 = 10	3 = 11
0 = 00	00	01	10	11
1 = 01	01	00	11	10
2 = 10	10	11	00	01
3 = 11	11	10	01	00

bit-wise Xor

Example: GF[2²] CoNe Freiburg

*	0 = 0	1 = 1	2 = x	$3 = x^2$
0 = 0	0	0	0	0
1 = 1	0	1	X	X ²
2 = x	0	X	X ²	1
$3 = x^2$	0	X ²	1	X

 $x^3 = 1?$ CoNe Freiburg

- Why is x³ = 1?
 - $x^2 = x + 1$
 - x + x = 0

x³ =

Irreducible Polynoms

- Irreducible polynoms are non-decomposable
 - w = 2: $x^2 + x + 1$
 - w = 4: $x^4 + x + 1$
 - w = 8: $x^8 + x^4 + x^3 + x^2 + 1$
 - w = 16: $x^{16} + x^{12} + x^3 + x + 1$
 - w = 32: $x^{32} + x^{22} + x^2 + x + 1$
 - w = 64: $x^{64} + x^4 + x^3 + x + 1$
- Decomposable polynom: $x^2 + 1 = (x + 1)^2 \mod 2$

Fast Multiplication

- Power laws
 - $\{2^0, 2^1, 2^2, ...\}$
 - $= \{x^0, x^1, x^2, x^3, \ldots\}$
 - $= \exp(0), \exp(1), \exp(2), \dots$
- $= \exp(x + y) = \exp(x) \cdot \exp(y)$
- Inverse function: log(exp(x)) = x
 - $\log(x \cdot y) = \log(x) + \log(y)$
- $x \cdot y = \exp(\log(x) + \log(y))$
 - Attention: normal addition in the exponent
- Values for exponential and logarithmic function stored in lookup tables

Example: GF[16]

 $q(x) = x^4 + x + 1$

x	0	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15
exp((x) 1	x	x	2	x ³	1+x	x+x²	x²+ x ³	1+x +x ³	1+x²	x+x ³	1+x +x²	x +x ² + x ³	1+x +x ² + x ³	1+x +x ³	² 1+x ³	1
exp((x) 1	2		4	8	3	6	12	11	5	10	7	14	15	13	9	1
	x	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	log(x)	o	1	4	2	2 E	5	10	3	14	9	7	6	13	11	12	

 $x \cdot y = \exp(\log(x) + \log(y))$

UNI FREIBURG

Special Case: GF[2]

- Boolean algebra
 - -x+y = x XOR y
 - $x \cdot y = x AND y$

Peer-to-Peer Networks

BURG

NI REII

11 Network Coding

Arne Vater

Technical Faculty Computer Networks and Telematics University of Freiburg