

Peer-to-Peer Networks

12 Fast Download, Part II

Arne Vater

Technical Faculty Computer Networks and Telematics University of Freiburg

- uses plain blocks for distribution
- plus k linearly independent code blocks
 - Reed-Solomon code
 - proposed in "Network coding for large scale content distribution", [2005]

- FEC(k) has read/write cost of O(min{ $k \cdot n, n^2$ })
 - example decoding matrix with 8 blocks and 3 FEC blocks:

($lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$	$lpha_{5}$	$lpha_{6}$	$lpha_7$	$lpha_{8}$	
	0	0	0	0	0	0	1	0	
	0	0	0	0	1	0	0	0	
	eta_1	β_2	eta_3	eta_4	eta_5	β_6	β_7	β_8	
	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6	γ_7	γ_8	
	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	1	
	0	1	0	0	0	0	0	0	
									-

- bring all plain blocks to the right

4

- bring all code blocks to the top

- remove all columns and rows with uncoded blocks
 - requires $O(k \cdot (n k))$ read/write accesses
- and decode the remaining code blocks

$$\begin{pmatrix} \alpha_1 & \alpha_4 & \alpha_6 \\ \beta_1 & \beta_4 & \beta_6 \\ \gamma_1 & \gamma_4 & \gamma_6 \end{pmatrix}^{-1} \times \begin{pmatrix} b_1 \\ b_4 \\ b_5 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_4 \\ x_6 \end{pmatrix}$$

- this adds $O(k \cdot n)$ read/write accesses

Forward Error Correction

- FEC(0) equals BitTorrent
- performance hierarchy
 - FEC(k + 1) > FEC(k)
- FEC(k) < Network Coding</p>

- SPAA 2009, SPAA 2010
- tree structure
 - fixed linear coefficients for all blocks x_i
 - Xor of two nodes creates parent node

$$b_i^{\log n}(c) = c_i x_i \quad \text{for } i \in \{1, \dots, n\}$$

$$b_i^{j-1}(c) = b_{2i-1}^j(c) + b_{2i}^j(c) \quad \text{for } j \in \{1, \dots, \log n\},$$

$$i \in \{1, \dots, 2^{j-1}\}$$

UNI FREIBURG

- k different trees
 - with linearly independent linear coefficients
- root nodes are equivalent to network coding blocks
- leaves are equivalent to uncoded blocks
- any code block can be decoded by Xor from
 - either its two children blocks
 - or its parent block and its sibling block
 - requires constant read/write complexity

file \vec{x} with n = 8

9

UNI FREIBURG

- Downloading from one tree
 - start with root block
 - continue with any child
 - and decode the other one by Xor
- Downloading from several trees
 - parallel download as from one tree
 - if in any subtree with *m* nodes there are *m* blocks available in all downloading trees
 - and Xor decoding is not possible
 - then use network coding to decode that subtree

- Read/Write Complexity (average)
 - O(n) for k = 1
 - O(min{ $kn \cdot \log^2 n, n^2$ } for any k
- Performance hierarchy
 - Treecoding(k + 1) > Treecoding(k)
- Treecoding(k) \geq FEC(k)

R/W Cost (average)

BitTorrent	Paircoding	FEC(k)	Treecoding	Network Coding
O(<i>n</i>)	$O(n \cdot \alpha(n))$	O(<i>k</i> · <i>n</i>)	O(kn · log² n)	O(<i>n</i> ²)

Performance

 $\alpha(n)$ is the inverse Ackerman function

Peer-to-Peer Networks

12 Fast Download, Part II

Arne Vater

Technical Faculty Computer Networks and Telematics University of Freiburg

