

Peer-to-Peer Networks 15 Self-Organization

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG

- Protokoll
 - Ping
 - participants query for neighbors
 - are forwarded according for TTL steps (time to live)
 - Pong
 - answers Ping
 - is forwarded backward on the query path
 - reports IP and port adress (socket pair)
 - number and size of available files

A Degree Distribution in Gnutella

- Modeling Large-scale Peer-to-Peer Networks and a Case Study of Gnutella
 - Mihajlo A. Jovanovic, Master Thesis, 2001
- The number of neighbors is distributed according a power law (Pareto) distribution
 - log(#peers with degree d) = c k log d
 - #peers with degree $d = C/d^k$

Pareto-Distribution Examples

- Pareto 1897: Distribution of wealth in the population
- Yule 1944: frequency of words in texts
- Zipf 1949: size of towns
- Iength of molecule chains
- file length of Unix-system files

. . . .

■ Discreet Pareto-Distribution for $x \in \{1, 2, 3, ...\}$

$$\mathbf{P}[X=x] = \frac{1}{\zeta(\alpha) \cdot x^{\alpha}}$$

- with constant factor

$$\zeta(\alpha) = \sum_{i=1}^{\infty} \frac{1}{i^{\alpha}}$$

- (also known as Riemann's Zeta-function)
- Heavy tail property
 - not all moments E[X^k] exist
 - the expectation exists if and only if (iff) α >2
 - variance and E[X²] exist iff α >3
 - $E[X^k]$ exists iff $\alpha > k+1$
- Density function of the continuous function for x>x₀

$$f(x) = \frac{\alpha - 1}{x_0} \left(\frac{x_0}{x}\right)^{\alpha}$$

REIBURG

are described by a power law (Pareto) distribution

- Experiments of
 - Kumar et al 97: 40 millions Webpages
 - Barabasi et al 99: Domain *.nd.edu + Web-pages in distance 3
 - Broder et al 00: 204 millions web pages (Scan Mai und Okt. 1999)

BURG

A Connectivity of Pareto Graphs Freiburg

- William Aiello, Fan Chung, Linyuan Lu, A Random Graph Model for Massive Graphs, STOC 2000
- Undirected graph with n nodes where
 - the probability of k neighbors for a node is $p_k % \left({{{\mathbf{k}}_k} \right)^2} \right)$
 - where $p_k = c k^{-\tau}$ for some normalizing factor c
- Theorem
 - For sufficient large n such Pareto-Graphs with exponent T we observe
 - for $\tau < 1$ the graph is connected with probability 1-o(1)
 - for $\tau > 1$ the graph is nont connected with probability 1-o(1)
 - for $1 < \tau < 2$ there is a connected component of size $\Theta(n)$
 - for 2< τ < 3.4785 there is only one connected component of size Θ(n) and all others have size O(log n)
 - for τ >3.4785: there is no large connected component of size Θ(n) with probability 1-o(1)
 - For τ >4: no large connected components which size can be described by a power law (Pareto) distribution

BURG

- George Kinsley Zipf claimed
 - that the frequency of the n most frequent word f(n)
 - satisfies the equation n f(n) = c.
- Zipf probability distribution for $x \in \{1, 2, 3, ...\}$

$$\mathbf{P}[X=x] = \frac{c}{x}$$

- with constant factor c only defined for connstant sized sets, since

$$\ln n \le \sum_{i=1}^n \frac{1}{i} \le 1 + \ln n$$

- is unbounded
- Zipf distribution relate to the rank
 - The Zipf exponent α may be larger than 1, i.e. $f(n) = c/n^{\alpha}$
- Pareto distribution realte the absolute size, e.g. the number of inhabitants

Size of towns Scaling Laws and Urban Distributions, Denise Pumain, 2003

Figure 1 The hierarchical differentiation in urban systems: Rank-size distribution of French agglomerations (1831-1999)

Figure 1. Fitted power law distributions of the number of site a) pages, b) visitors, c) out links, and d) in links, measured in 1997.

- Milgram's experiment 1967
 - 60 random chosen participants in Wichita, Kansas had to send a packet to an unknown address
 - They were only allowed to send the packet to friends
 - likewise the friends
- The majority of packtes arrived within six hops
- Small-World-Networks
 - are networks with Pareto distributed node degree
 - with small diameter (i.e. O(log^c n))
 - and relatively many cliques
- Small-World-Networks
 - Internet, World-Wide-Web, nervous systems, social networks

How do Small World Networks Come into Existence?

- Emergence of scaling in random networks, Albert-Laszlo Barabasi, Reka Albert, 1999
- Preferential Attachment-Modell (Barabasi-Albert):
 - Starting from a small starting graph successively nodes are inserte with m edges each (m is a parameter)
 - The probability to choose an existing node as a neighbor is proportional to the current degree of a node
- This leads to a Pareto network with exponent 2,9 ± 0,1
 - however cliques are very seldom
- Watts-Strogatz (1998)
 - Start with a ring and connections to the m nearest neighbors
 - With probability p every edge is replaced with a random edge
 - Allows continuous transition from an ordered graph to chaos
- Extended by Kleinberg (1999) for the theoretical verification of Milgram's experiment

- Modeling Large-scale Peer-to-Peer Networks and a Case Study of Gnutella
 - Mihajlo A. Jovanovic, 2001

Snapshot date	Nodes	Edges	Diameter	
11/13/2000	992	2465	9	
11/16/2000	1008	1782	12	
12/20/2000	1077	4094	10	
12/27/2000	1026	3752	8	
12/28/2000	1125	4080	8	

UNI FREIBURG

- Modeling Large-scale Peer-to-Peer Networks and a Case Study of Gnutella
 - Mihajlo A. Jovanovic, 2001
- Comparison of the characteristic path length
 - mean distance between two nodes

	Gnutella	BA	ws	G(n,p)	2D mesh
11/13/2000	3.72299	3.47491	4.59706	4.48727	20.6667
11/16/2000	4.42593	4.07535	4.61155	5.5372	21.3333
12/20/2000	3.3065	3.19022	4.22492	3.6649	22
12/27/2000	3.30361	3.18046	4.19174	3.70995	21.3333
12/28/2000	3.32817	3.20749	4.25202	3.7688	22.6667

Peer-to-Peer Networks 15 Self-Organization

Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

BURG