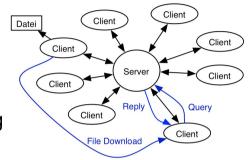


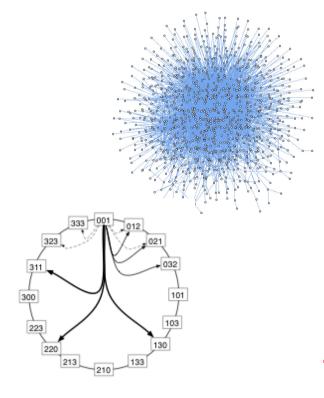
Peer-to-Peer Networks 16 Random Graphs for Peer-to-Peer-Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

A Short History of Peer-to-Peer-Networks

- 1st Generation
 - Shawn "Napster" Fanning (1999)
 - Centralized client-server database
 - Peer-to-peer: download (mostly mp3-music)
 - Shut down by court order because of copyright infring
- 2nd Generation:
 - Decentralized, uncontrolled communication network
 - Lookup by broadcasting a query
 - Gnutella (Frankel, Pepper, 2000)
 - eDonkey
 - FastTrack
- 3rd Generation
 - Efficient data structures (DHT)
 - CAN, Chord, Pastry, Tapestry, ...
 - Anonymity features
 - Freenet, I2P, GNUnet





Peer-to-Peer Networking Facts

- Hostile environment
 - Legal situation
 - Egoistic users
 - Networking
 - ISP filter Peer-to-Peer Networking traffic
 - User arrive and leave
 - Several kinds of attacks
 - Local system administrators fight peer-to-peer networks

- Implication
 - Use stable robust network structure as a backbone
 - Napster: star
 - CAN: lattice
 - Chord, Pastry, Tapestry:
 ring + pointers for lookup
 - Gnutella, FastTrack: chaotic "social" network
- Idea: Use a Random d-regular Network

Why Random Networks?

- Random Graphs ...
 - Robustness
 - Simplicity
 - Connectivity
 - Diameter
 - Graph expander
 - Security

Random Graphs in Peer-to-Peer networks:

- Gnutella
- gnutella.com JXTApose

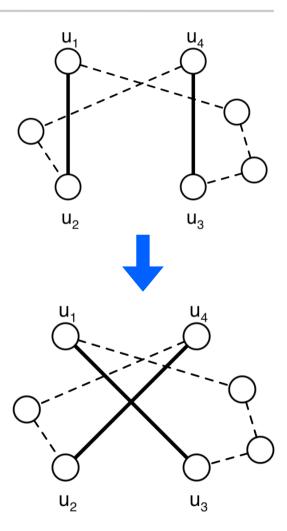
Dynamic Random Networks ...

- Peer-to-Peer networks are highly dynamic ...
 - maintenance operations are needed to preserve properties of random graphs
 - which operation can maintain (repair) a random digraph?

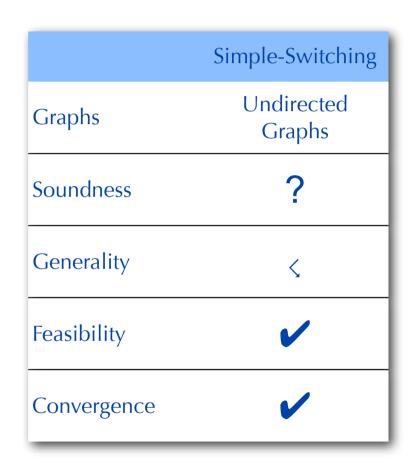
Desired properties:		
Soundness	Operation remains in domain (preserves connectivity and out-degree)	
Generality	every graph of the domain is reachable does not converge to specific small graph set	
Feasibility	can be implemented in a P2P-network	
Convergence Rate	probability distribution converges quickly	

Simple Switching

- Simple Switching
 - choose two random edges
 - $\{u_1,u_2\} \in E, \{u_3,u_4\} \in E$
 - such that {u₁,u₃}, {u₂,u₄} ∉ E
 - add edges {u₁,u₃}, {u₂,u₄} to E
 - remove {u₁,u₂} and {u₃,u₄} from E
- McKay, Wormald, 1990
 - Simple Switching converges to uniform probability distribution of random network
 - Convergence speed:
 - $O(nd^3)$ for $d \in O(n^{1/3})$
- Simple Switching cannot be used in Peerto-Peer networks
 - Simple Switching disconnects the graph with positive probability
 - No network operation can re-connect disconnected graphs



Necessities of Graph Transformation



- Problem: Simple Switching does not preserve connectivity
- Soundness
 - Graph transformation remains in domain
 - Map connected d-regular graphs to connected d-regular graphs
- Generality
 - Works for the complete domain and can lead to any possible graph
- Feasibility
 - Can be implemented in P2P network
- Convergence Rate
 - The probability distribution converges quickly

Directed Random Graphs

- Peter Mahlmann, Christian Schindelhauer
 - Distributed Random Digraph Transformations for Peer-to-Peer Networks, 18th ACM Symposium on Parallelism in Algorithms and Architectures, Cambridge, MA, USA. July 30 - August 2, 2006

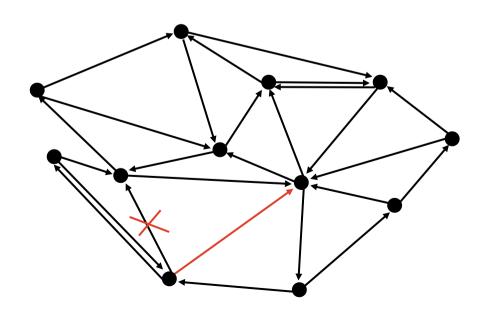
Directed Graphs

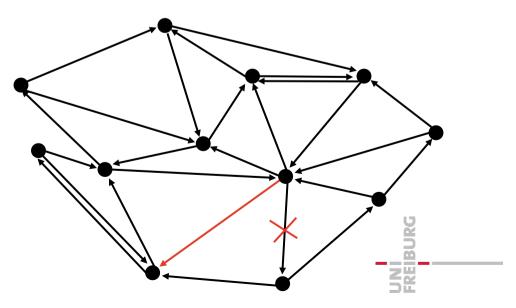
Push Operation:

- 1.Choose random node *u*
- 2.Set v to u
- 3.While a random event with p= 1/h appears
 a)Choose random edge starting at v and ending at v'
 b)Set v to v'
- 3.Insert edge (v,v')
- 4.Remove random edge starting at v

Pull Operation:

- 1.Choose random node *u*
- 2.Set v to u
- 3. While a random event with p = 1/h appears
 - a) Choose random edge starting at v and ending at v'
 - b) Set v to v'
- 3.Insert edge (v',v)
- 4. Remove random edge starting at v'



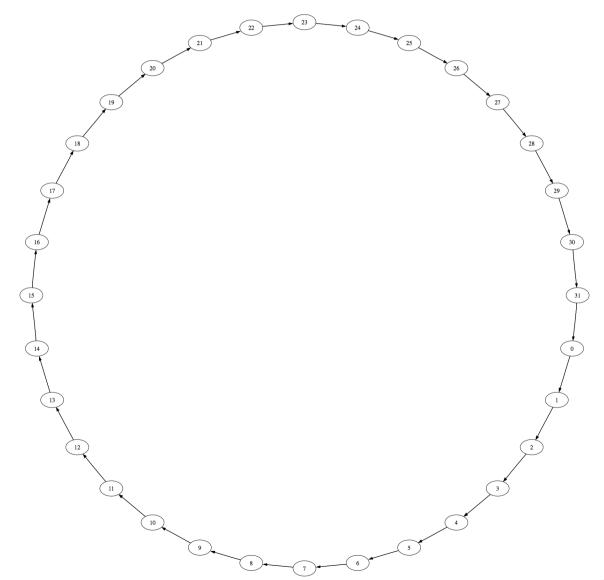


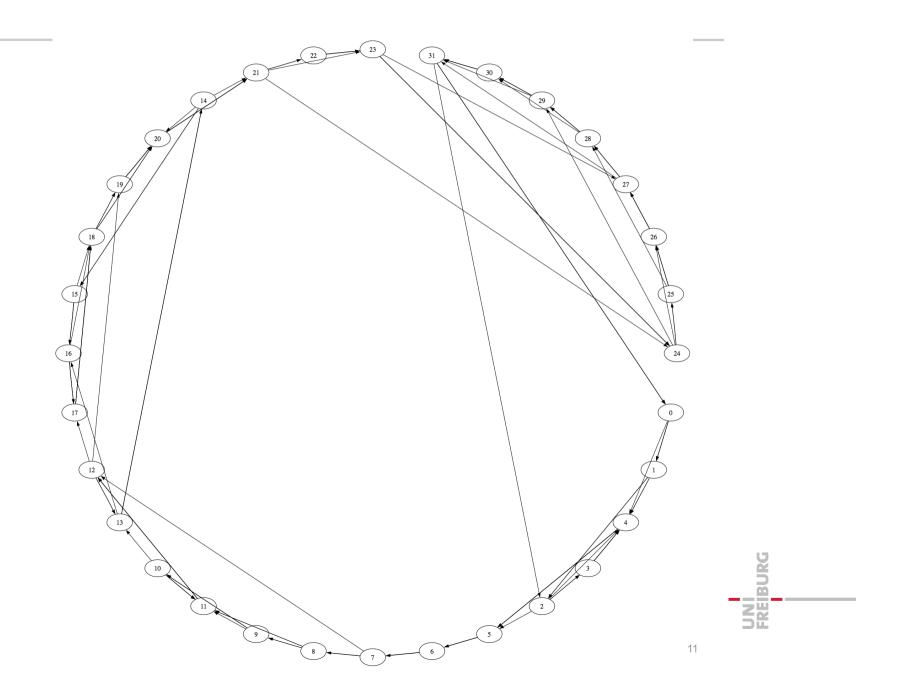
Simulation of Push-Operations

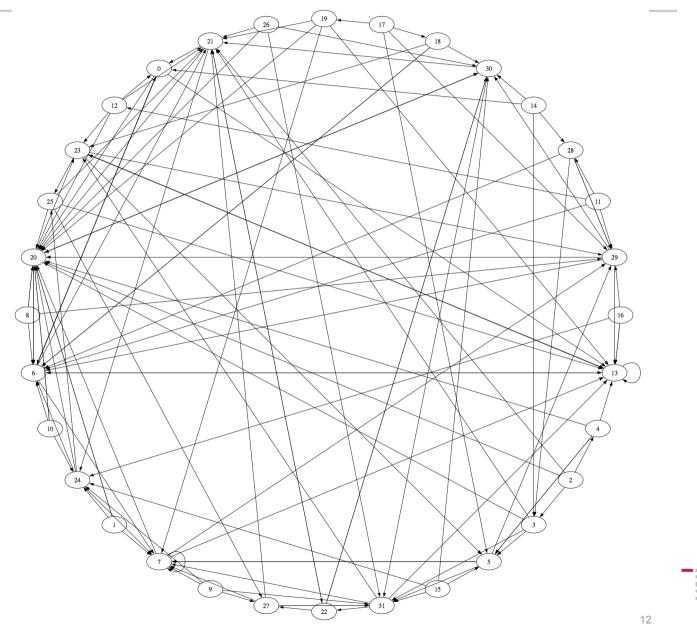
Start situation

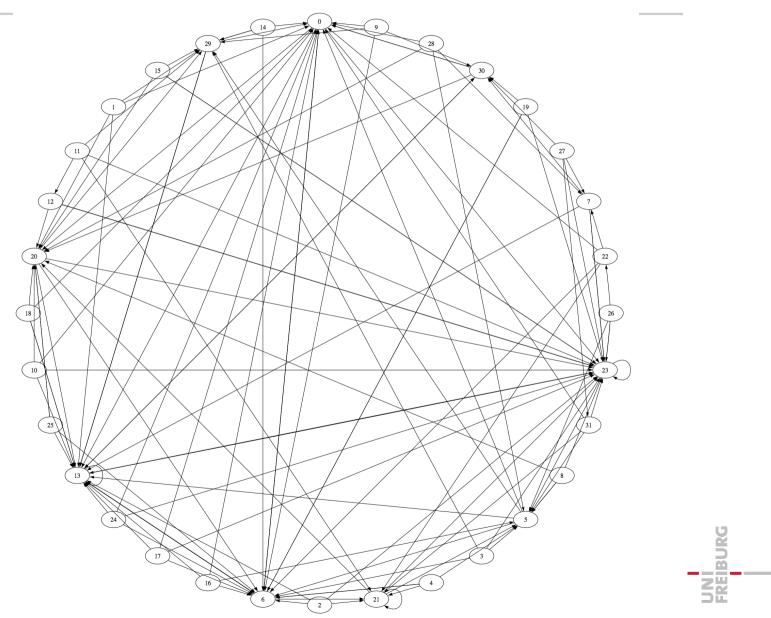
Parameter:

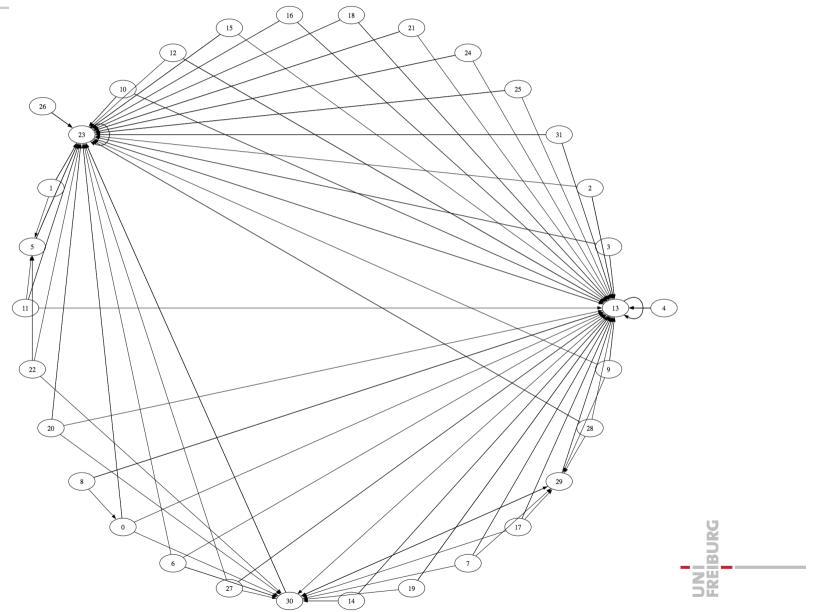
n = 32 Knoten out-degree d = 4 Hop-distance h = 3

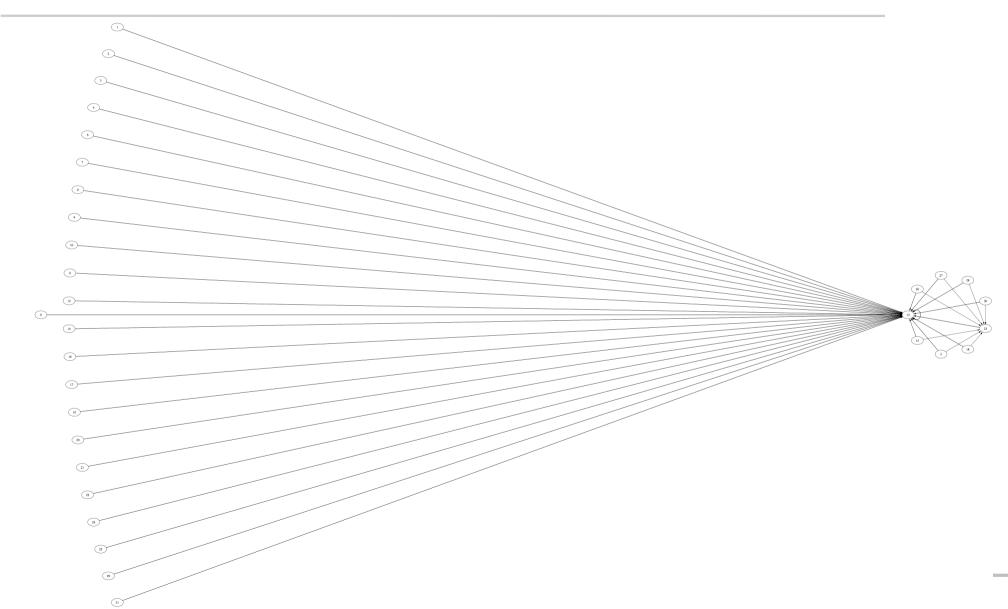


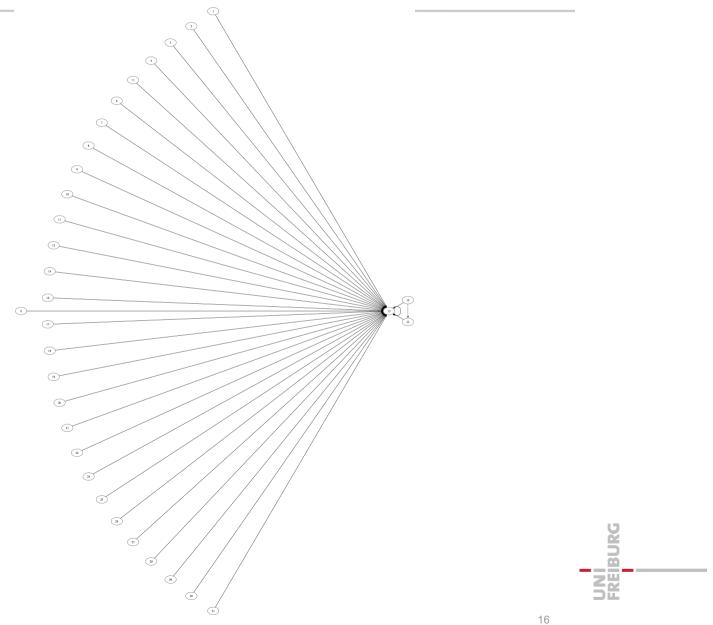


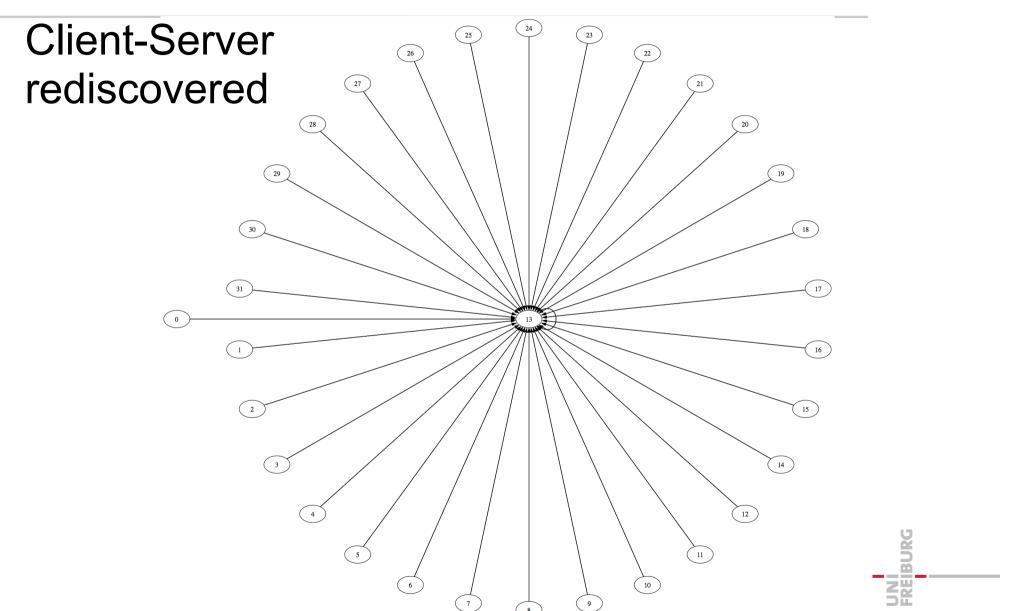










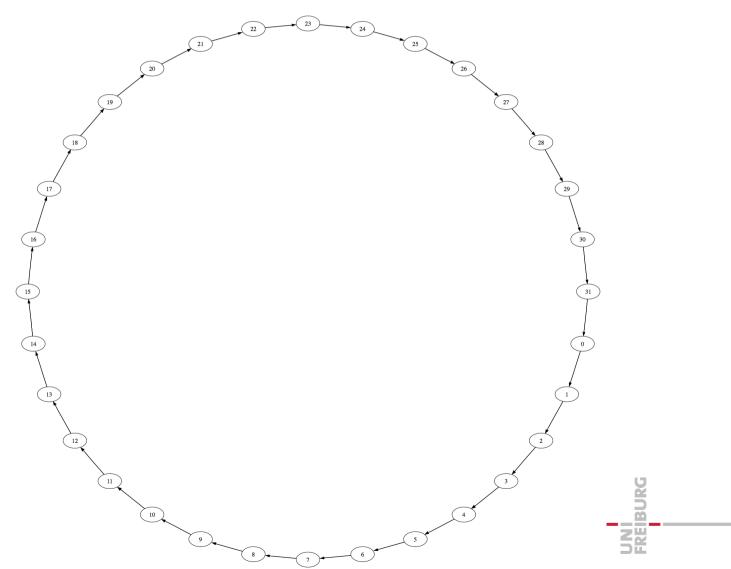


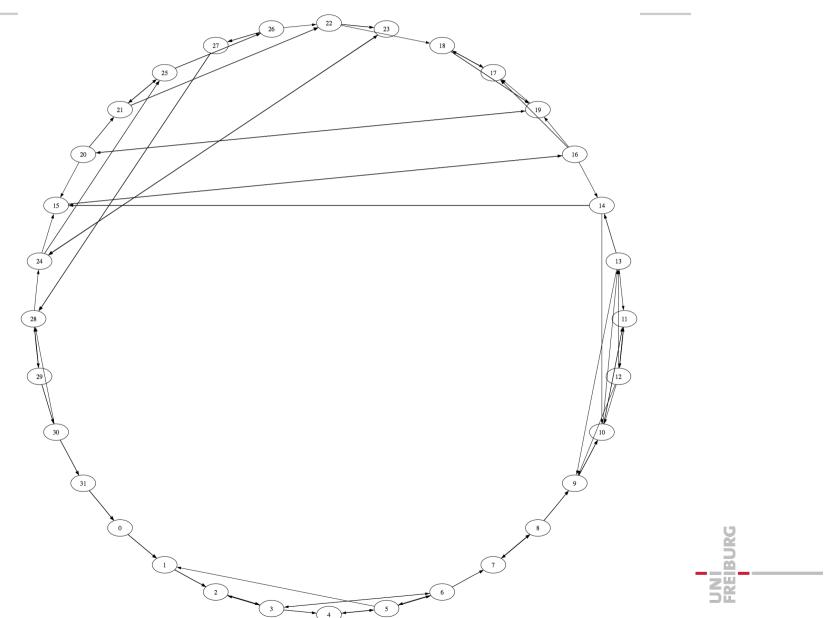
Simulation of Pull-Operation ...

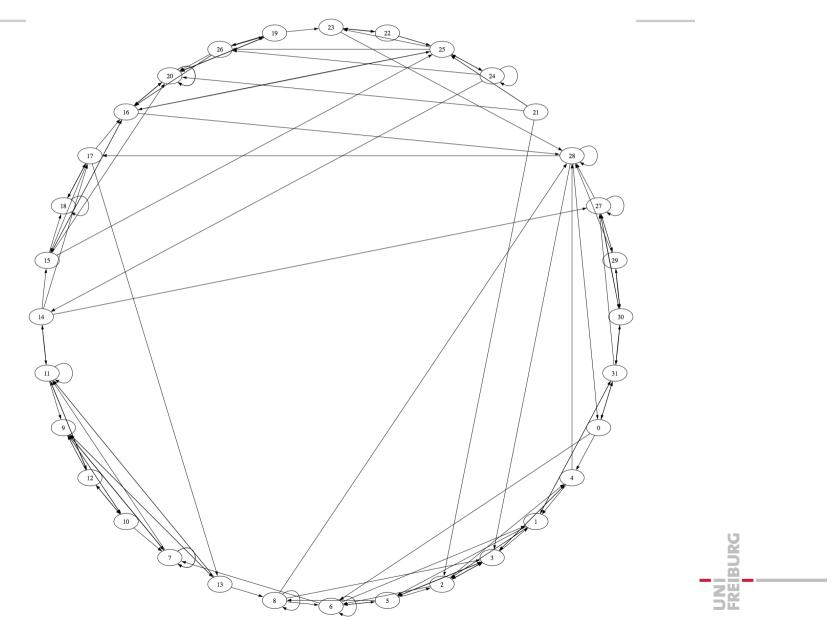
Start situation

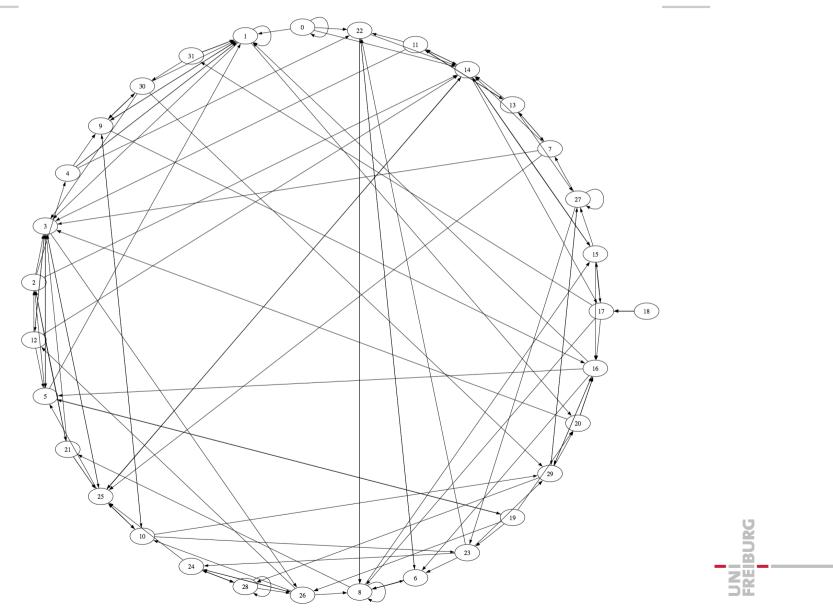
Parameter:

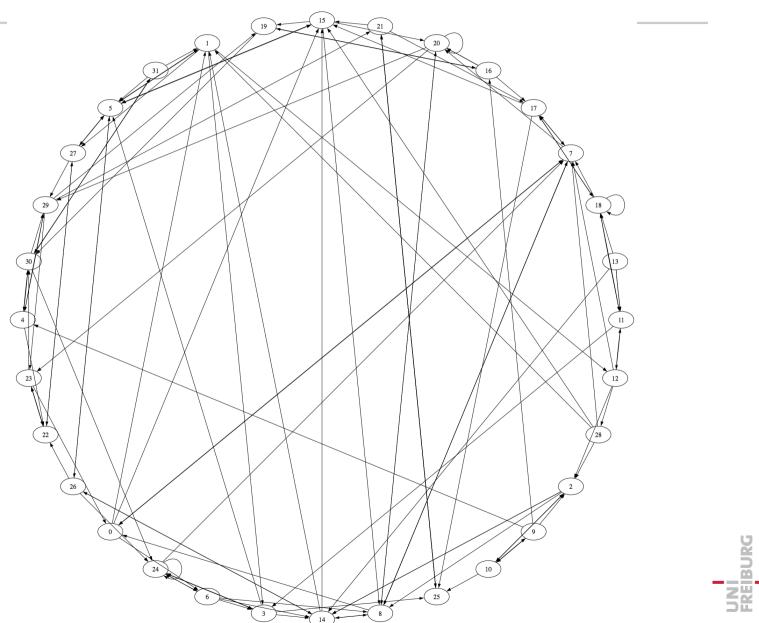
n = 32 nodesoutdegree d = 4hop distance h = 3

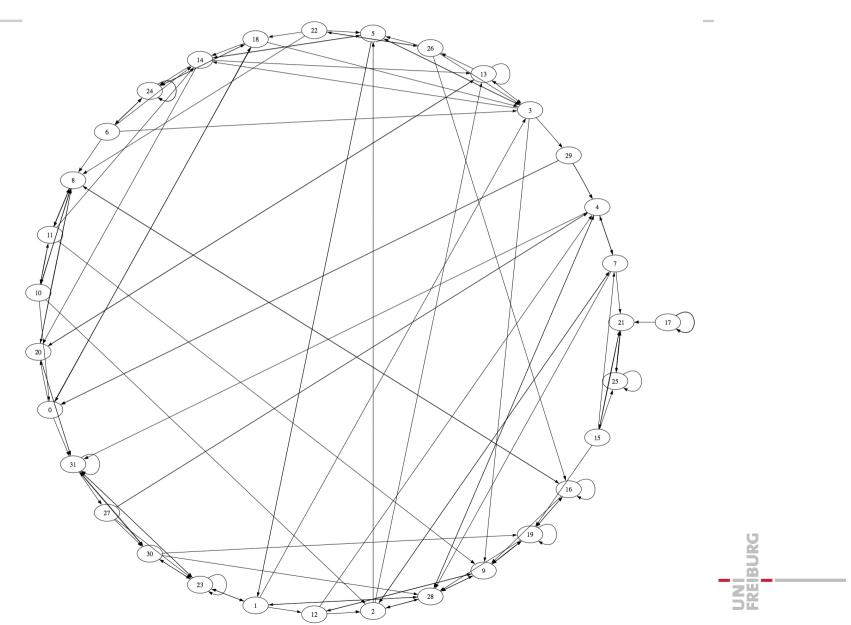


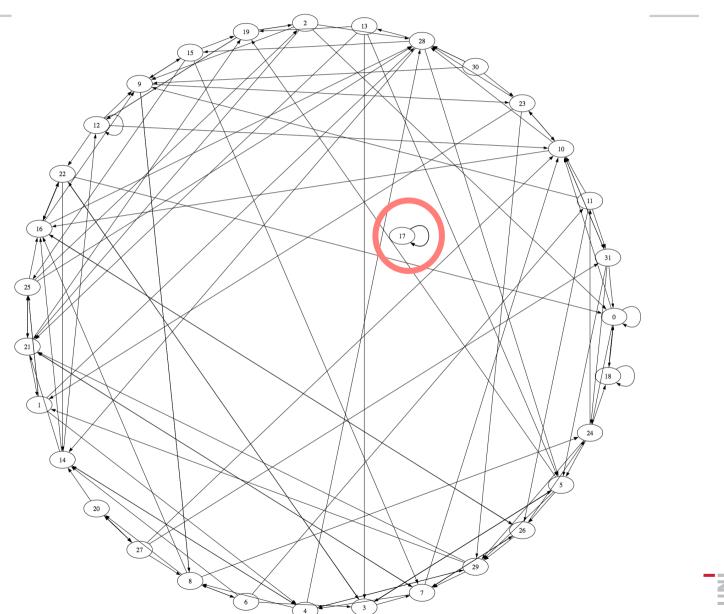


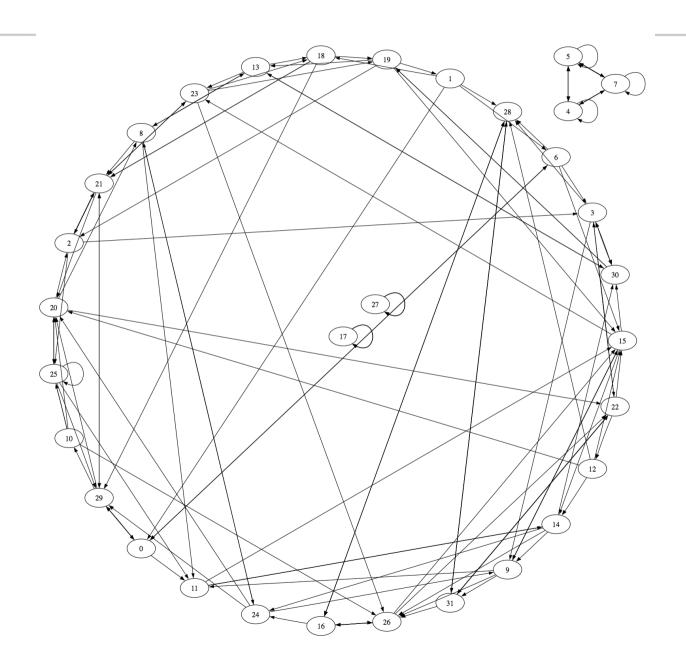


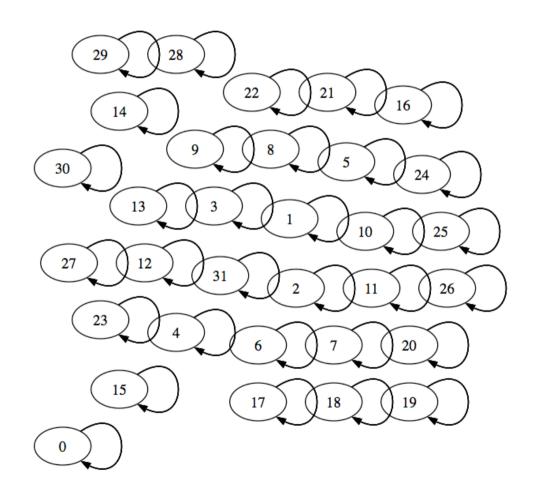




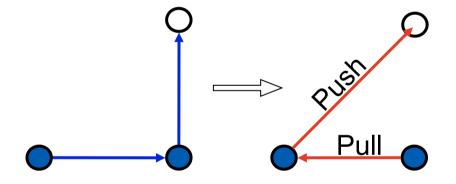








Combination of Push and Pull

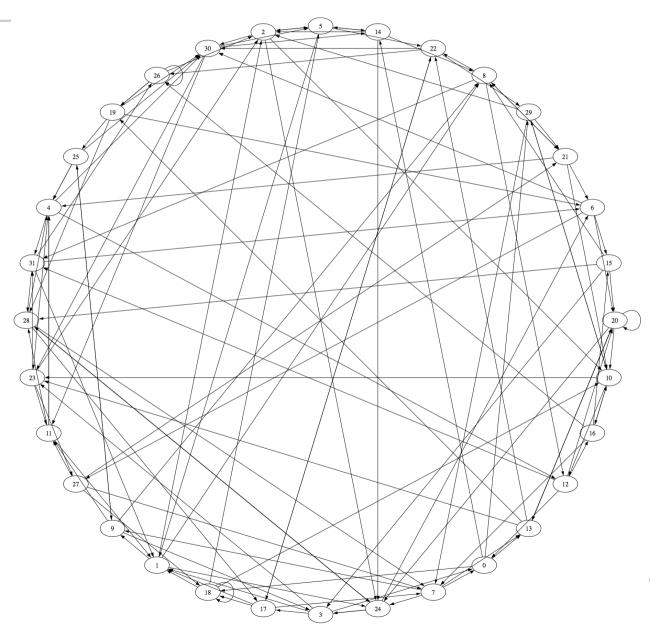


Simulation of Push&Pull-Operations ...

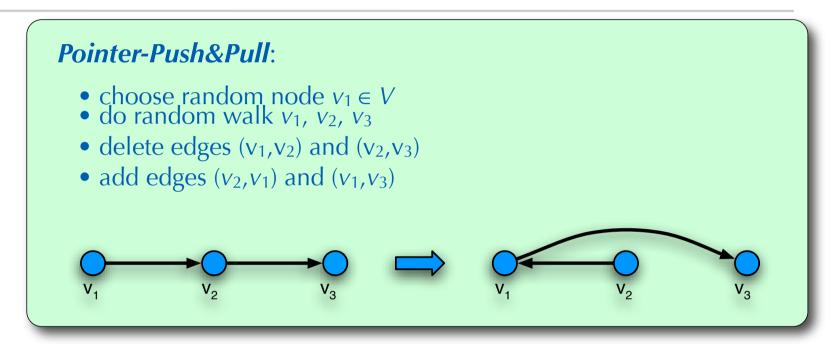
Same start situation

Parameters n = 32 nodes degree d = 4 hop-distance h = 3

but 1.000.000 iterations

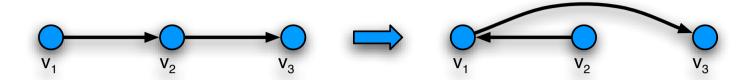


Pointer-Push&Pull for Multi-Digraphs

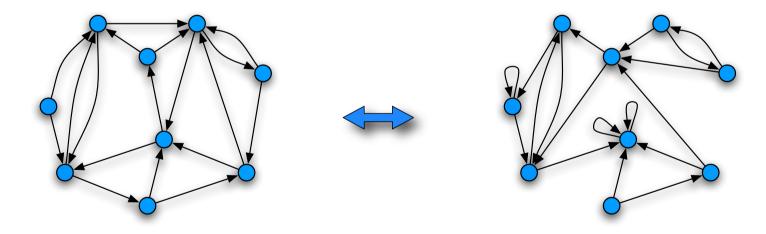


- obviously:
 - preserves connectivity of G
 - does not change out-degrees
- → Pointer-Push&Pull is **sound** for the domain of out-regular connected multi-digraphs

Pointer-Push&Pull: Reachability



Lemma A series of random Pointer-Push&Pull operations can transform an arbitrary connected out-regular multi-digraph, to every other graph within this domain



Pointer-Push&Pull: Uniformity

What is the stationary prob. distribution generated by Pointer-Push&Pull?

• depends on random walk

example: node oriented random walk

- choose random neighboring node with p=1/d respectively
- due to multi-edges possibly less than *d* neighbors
- if no node was chosen operation is canceled

$$P[G \xrightarrow{\mathcal{PP}} G'] = P[G' \xrightarrow{\mathcal{PP}} G]$$

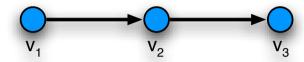
Uniform Generality

Theorem: Let *G'* be a d-out-regular connected multi-digraph with n nodes. Applying Pointer-Push&Pull operations repeatedly will construct every d-out-regular connected multi-digraph with the same probability in the limit, i.e.

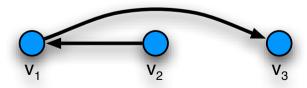
$$\lim_{t \to \infty} P[G' \xrightarrow{t} G] = \frac{1}{|\mathcal{MDG}_{n,d}|}$$

Feasibility ...

A Pointer-Push&Pull operation in the network ...



(2) v_2 replaces (v_2, v_3) by (v_2, v_1) and sends ID of v_3 to v_1



- only 2 messages between two nodes, carrying the information of one edge only
- verification of neighborhood is mandatory in dynamic networks
 - ⇒ combine neighborcheck with Pointer-Push&Pull

Properties of Pointer-Push&Pull

	Pointer-Push&Pull
Graphs	Directed Multigraphs
Soundness	
Generality	
Feasibility	
Convergence	?

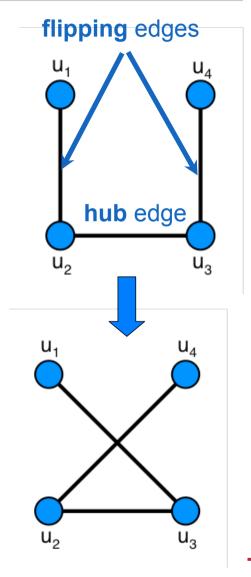
- strength of Pointer-Push&Pull is its **simplicity**
- generates truly random digraphs
- the price you have to pay: multi-edges

Open Problems:

- convergence rate is unknown, conjecture $O(dn \log n)$
- is there a similar operation for simple digraphs?

The 1-Flipper (F1)

- The operation
 - choose random edge $\{u_2,u_3\}\in E,$ hub edge
 - choose random node $u_1 \in N(u_2)$
 - 1st flipping edge
 - choose random node $u_4 \in N(u_3)$
 - 2nd flipping edge
 - if $\{u_1,u_3\}$, $\{u_2,u_4\} \notin E$
 - flip edges, i.e.
 - add edges {u₁,u₃}, {u₂,u₄} to E
 - remove {u₁,u₂} and {u₃,u₄} from E

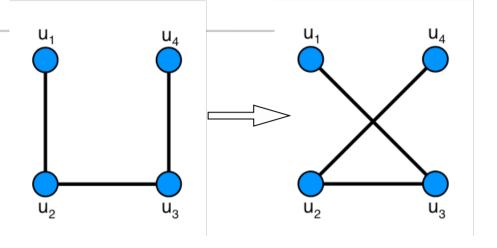


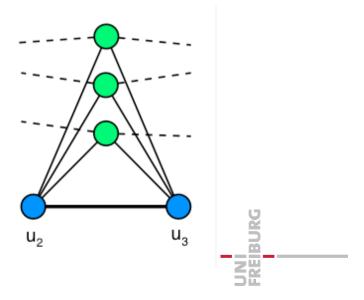
1-Flipper is sound

Soundness:

- 1-Flipper preserves d-regularity
 - follows from the definition
- 1-Flipper preserves connectivity
 - because of the hub edge

- For all d > 2 there is a connected d-regular graph G such that $P[G \xrightarrow{F^1} G] \neq 0$
- For all d ≥ 2 and for all d-regular connected graphs at least one 1-Flipper-operation changes the graph with positive probability
 - This does not imply generality

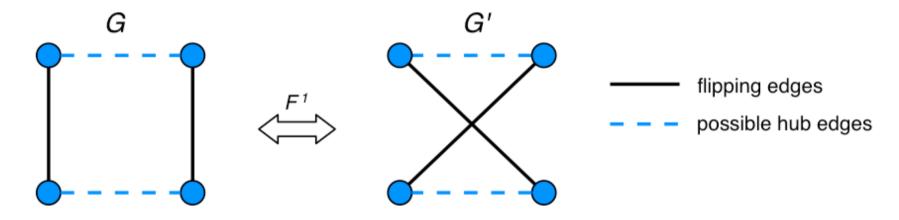




1-Flipper is symmetric

- Lemma (symmetry):
 - For all undirected regular graphs G,G':

$$P[G \xrightarrow{F^1} G'] = P[G' \xrightarrow{F^1} G]$$



1-Flipper provides generality

- Lemma (reachability):
 - For all pairs G,G' of connected d-regular graphs there exists a sequence of 1-Flipper operations transforming G into G'.

1-Flipper properties: uniformity

- Theorem (uniformity):
 - Let G₀ be a d-regular connected graph with n nodes and d > 2. Then in the limit the 1-Flipper operation constructs all connected d-regular graphs with the same probability:

$$\lim_{t \to \infty} P[G_0 \xrightarrow{t} G] = \frac{1}{|\mathcal{C}_{n,d}|}$$

1-Flipper properties: Expansion

- Definition (edge boundary):
 - The edge boundary δS of a set $S \subset V$ is the set of edges with exactly one endpoint in S.
- Definition (expansion):
 A graph G=(V,E) has expansion β > 0
 - if for all node sets S with |S| ≤ |V|/2:
 - |δS| ≥ β |S|
- Since for d ∈ ω(1) a random connected d-regular graph is a θ(d) expander asymptotically almost surely (a.a.s: in the limit with probability 1), we have
- Theorem:
 - For d > 2 consider any d-regular connected Graph G0. Then in the limit the 1-Flipper operation establishes an expander graph after a sufficiently large number of applications a.a.s.

Flipper

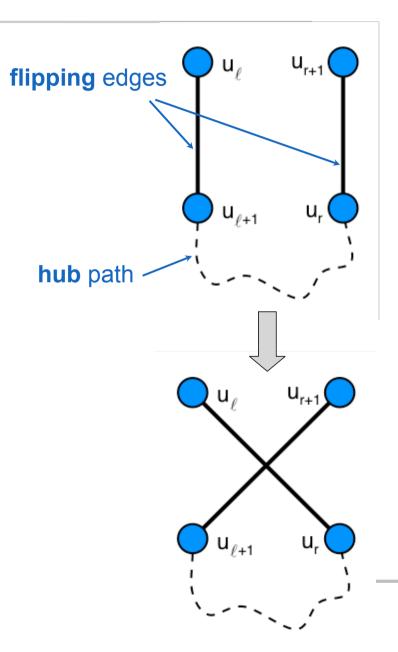
	Flipper
Graphs	Undirected Graphs
Soundness	
Generality	
Feasibility	
Convergence	?

- **▶** Flipper involves 4 nodes
- **▶** Generates truly random graphs
- Open Problems:
 - convergence rate is unknown, conjecture $O(dn \log n)$

CoNe Freiburg

The k-Flipper (Fk)

- The operation
 - choose random node
 - random walk P' in G
 - choose hub path with nodes
 - $\{u_l, u_r\}$, $\{u_{l+1}, u_{r+1}\}$ occur only once in P'
 - if $\{u_l, u_r\}, \{u_{l+1}, u_{r+1}\} \notin E$
 - add edges {u_i, u_r}, {u_{i+1},u_{r+1}} to E
 - remove {u_I,u_{I+1}} and {u_r,u_{r+1}} from E

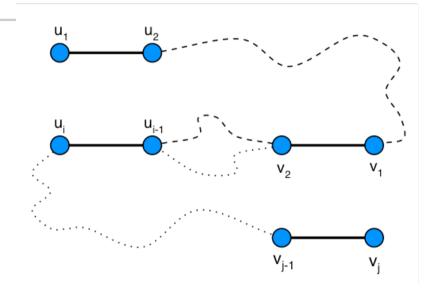


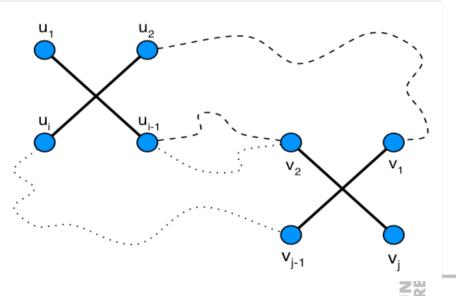
k-Flipper: Properties ...

- k-Flipper preserves connectivity and d-regularity
 - proof analogously to the 1-Flipper
- k-Flipper provides reachable,
 - since the 1-Flipper provides reachability
 - k-Flipper can emulate 1-Flipper
- But: k-Flipper is not symmetric:
 - a new proof for expansion property is needed

Concurrency ...

- In a P2P-network there are concurrent Flipper operations
 - No central coordination
 - Concurrent Flipper operations can speed up the convergence process
 - However concurrent Flipper operations can disconnect the network





k-Flipper

	k-Flipper large k	k-Flipper small k	
Graphs	Undirected Graphs	Undirected Graphs	
Soundness			
Generality			
Feasibility	ζ.		
Convergen		?	

- Convergence only proven for too long paths
 - Operation is not feasible then.
 - Does k-Flipper quickly converge for small k?
- Open problem:
 - Which k is optimal?

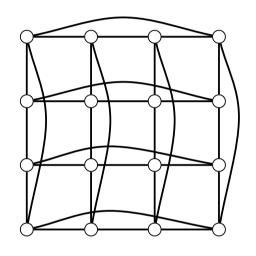
All Graph Transformation

	Simple- Switching	Flipper	Pointer- Push&Pull	k-Flipper small k	k-Flipper large k
Graphs	Undirected Graphs	Undirected Graphs	Directed Multigraphs	Undirected Graphs	Undirected Graphs
Soundness	?	/	/	/	
Generality	ζ	/	/	/	
Feasibility	/	/	/	/	<
Conver- gence	/	?	?	?	

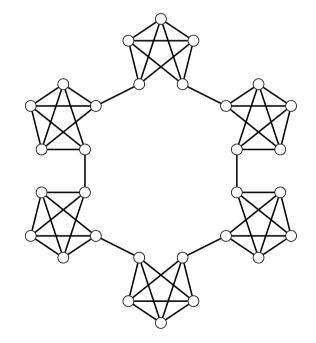
Open Problems

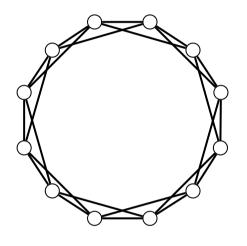
- Conjecture: Flipper converges in after O(dn log n) operations to a truly random graph
- Conjecture: k-Flipper converges faster, but involves more nodes and flags
- Conjecture: k-Flipper does not pay out
- Empirical Simulations
- Estimate expansion by eingenvalue gap
- Estimate eigenvalue gap by iterated multiplication of a start vector

Start Graphs

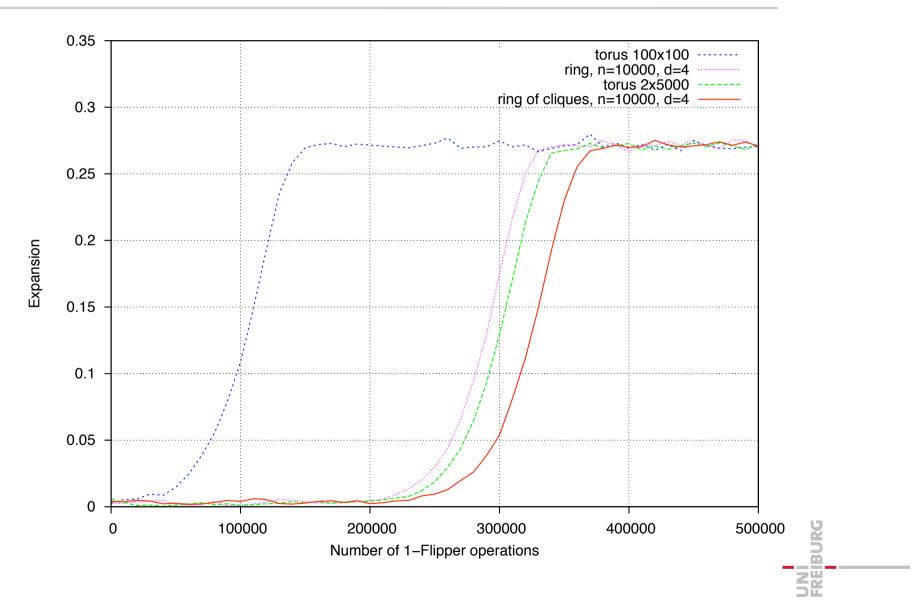


- Ring with neighbor edges
- Torus
- Ring of cliques

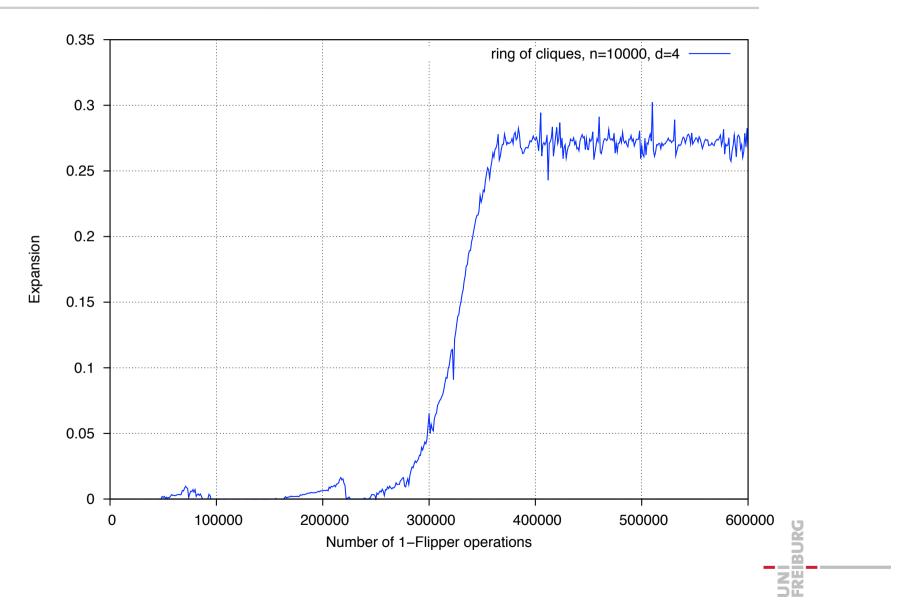




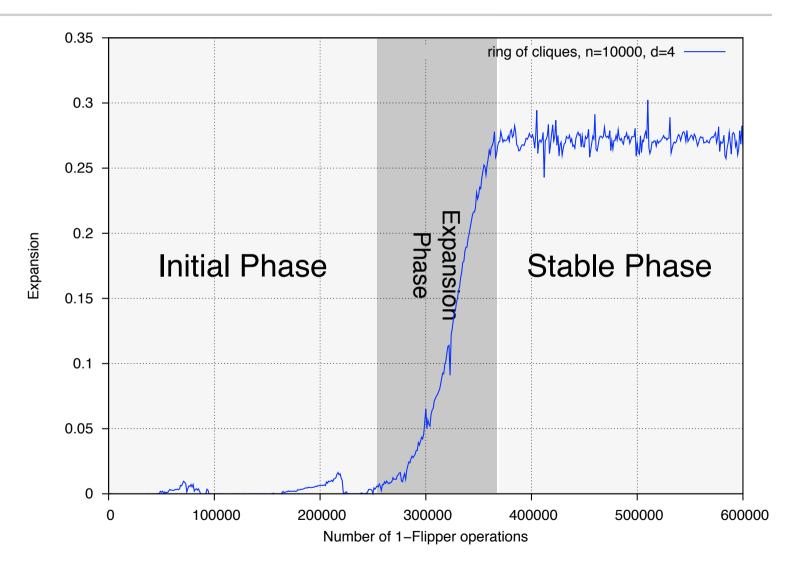
Flipper Influence of the Start Graph



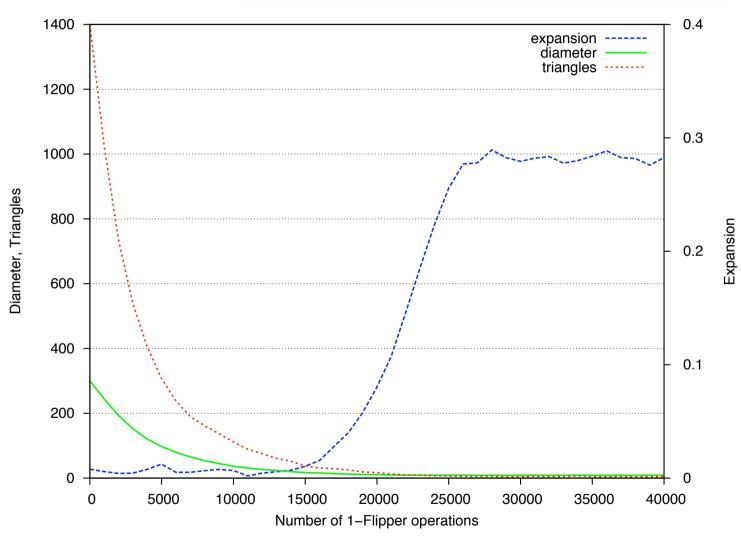
Development of Expansion



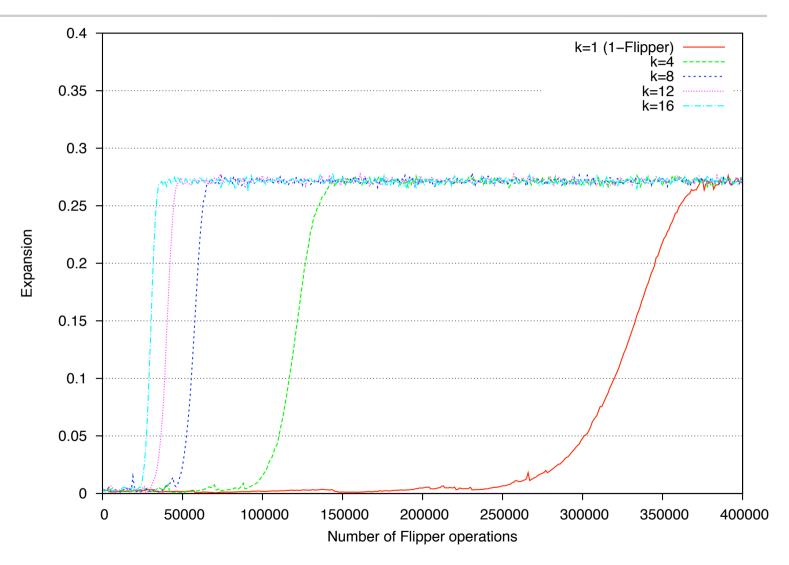
Development of Expansion



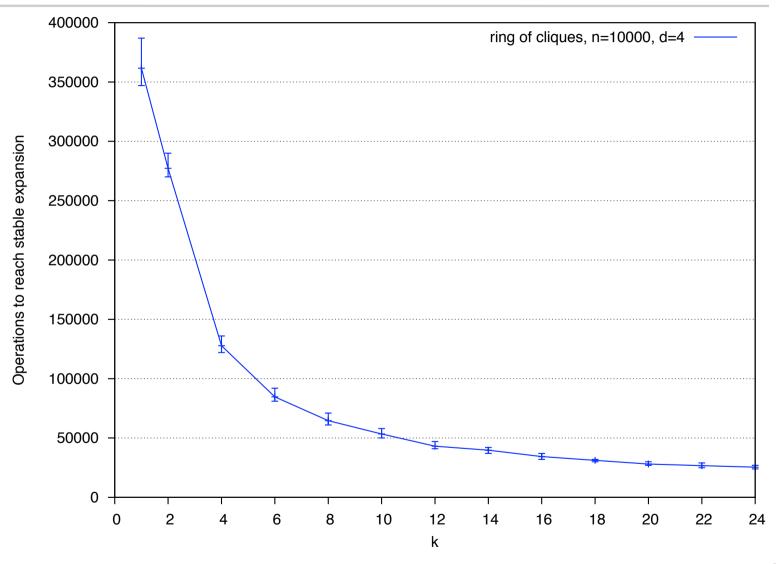
Expansion, Diameter & Triangles



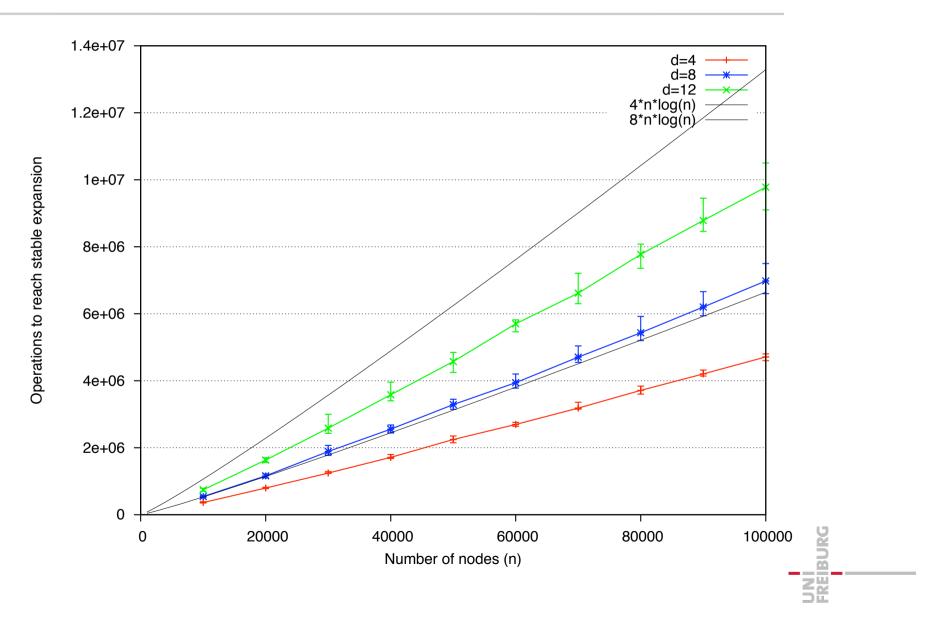
k-Flipper Start Graph: Ring of Cliques



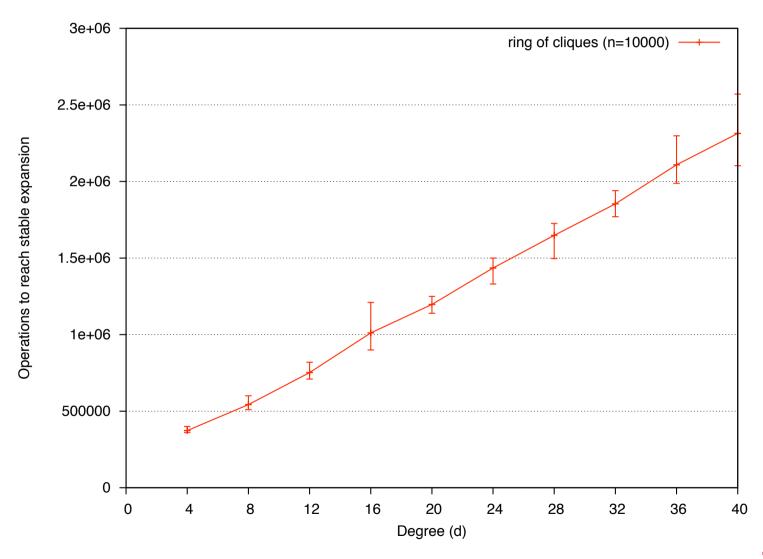
k-Flipper Start Graph: Ring of Cliques



Convergence of Flipper



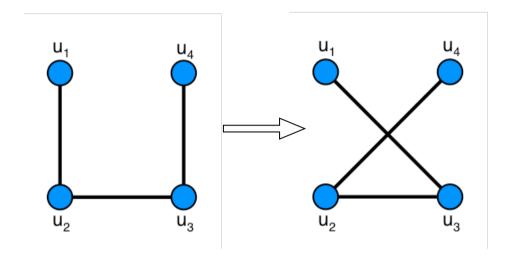
Convergence of Flipper Varying Degree

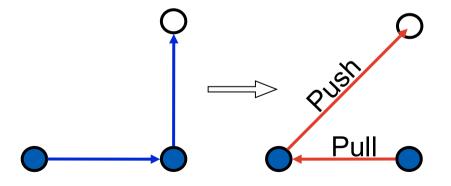


All Graph Transformation

	Simple- Switching	Flipper	Pointer- Push&Pull	k-Flipper small k	k-Flipper large k
Graphs	Undirected Graphs	Undirected Graphs	Directed Multigraphs	Undirected Graphs	Undirected Graphs
Soundness	?				
Generality	<				
Feasibility					<
Convergence			?		

Good Peer-to-Peer-Operations





Topology-Management

 T-Man: Fast Gossip-based Construction of Large-Scale Overlay Topologies Mark Jelasity Ozalp Babaoglu, 1994

Distributed Topology Construktion

```
do at a random time once in each
consecutive interval of T time units
                                                   do forever
  p \leftarrow \text{selectPeer}()
                                                      receive buffer_q from q
  myDescriptor \leftarrow (myAddress, myProfile)
                                                     myDescriptor \leftarrow (myAddress, myprofile)
  buffer \leftarrow merge(view, \{myDescriptor\})
                                                      buffer \leftarrow merge(view, \{myDescriptor\})
                                                      buffer \leftarrow merge(buffer,rnd.view)
  buffer \leftarrow merge(buffer,rnd.view)
  send buffer to p
                                                      send buffer to q
                                                      buffer \leftarrow merge(buffer_q, view)
  receive bufferp from p
  buffer \leftarrow merge(buffer_p, view)
                                                      view \leftarrow selectView(buffer)
  view \leftarrow selectView(buffer)
                                                                  (b) passive thread
               (a) active thread
```

Fig. 1. The T-MAN protocol.

Finding a Torus

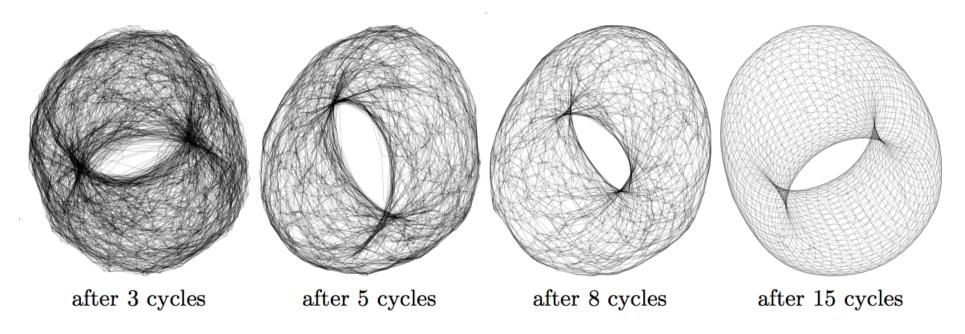
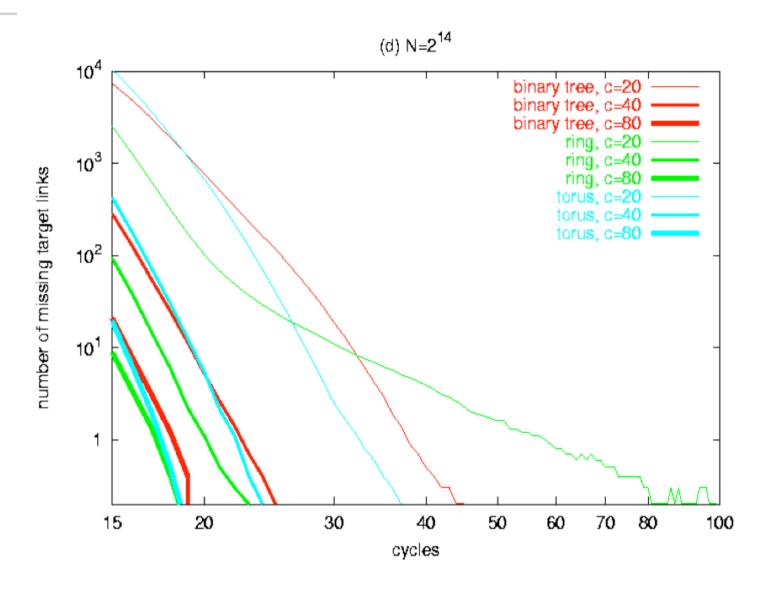


Fig. 2. Illustrative example of constructing a torus over $50 \times 50 = 2500$ nodes, starting from a uniform random topology with c = 20. For clarity, only the nearest 4 neighbors (out of 20) of each node are displayed.

Convergence of T-MAN



T-Chord

 Chord on demand, A Montresor, M Jelasity, O Babaoglu - Peer-to-Peer Computing, 2005. P2P 2005.

Main Technique T-Man

The T-Man algorithm

```
// view is a collection of neighbors
Init: view = rnd.view \cup \{ (myaddress, mydescriptor) \}
                 // active thread
                                                            // passive thread
                 // executed by p
                                                            // executed by p
                 do once every
                                                            do forever
                      δ time units
                                                             receive msg<sub>a</sub> from *
                  q = selectNeighbor(view)
                                                             msg_p = \frac{\text{extract}(view, q)}{}
                  msg_p = \frac{\text{extract}(view, q)}{}
                                                             send msg<sub>p</sub> to q
A "round"
                  send msg_{p} to q
                                                             view = merge(view, msg<sub>a</sub>)
of length
                  receive msg_q from q

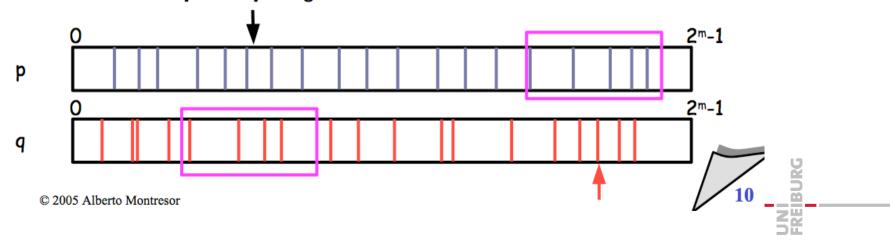
view = merge(view, msg_q)
```

© 2005 Alberto Montresor

Adaption for Chord

T-Man for T-Chord

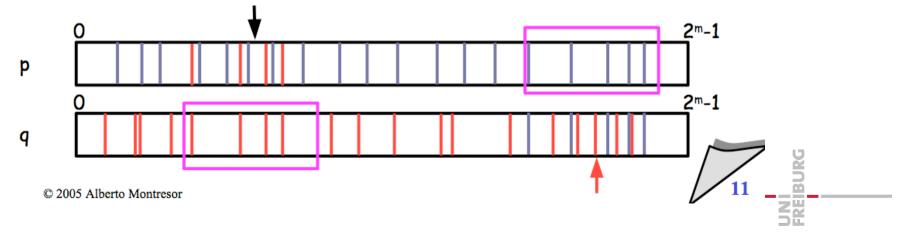
- selectPeer():
 - randomly select a peer q from the r nodes in my view that are nearest to p in terms of ID distance
- extract():
 - send to q the r nodes in local view that are nearest to q
 - q responds with the r nodes in its view that are nearest to p
- merge():
 - both p and q merge the received nodes to their view



After Exchange of Links

T-Man for T-Chord

- selectPeer():
 - randomly select a peer q from the r nodes in my view that are nearest to p in terms of ID distance
- extract():
 - send to q the r nodes in local view that are nearest to q
 - q responds with the r nodes in its view that are nearest to p
- merge():
 - both p and q merge the received nodes to their view



Peer-to-Peer Networks 16 Random Graphs for Peer-to-Peer-Networks

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg