
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

05 - Validation, Part I

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

‣ In the last lectures:

• Specification of protocols and data/message formats

‣ In this chapter:

• Building a validation model

• Verification with SPIN

• Example: Validation of the Alternating Bit Protocol

2

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Validation and Model Checking

‣ Validation models for protocols:

• Description of procedure rules (partial description)

• Finite state model

• Prototype of an implementation

‣ Model checking

• Automated verification technique

• Does a protocol satisfy some predefined logical
properties?

3

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Model Checking

4

Requirements

Design specification
and validation

Implementation

Deployment and
maintenance

Test and evaluation

Scope
of “classic”
model checking

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Model checking

5

Requirements
elicitation

Customer or user
requirements

[S. Leue, Design of Reactive Systems, Lecture Notes, 2001]

Requirements
analysis and
negotiation

Requirements
documentation

and specification

Requirements
validation

Negotiated and
validated

requirements

validation
model M

logic specification L

model checking
M ⊨ L

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Model checking with SPIN

‣ Outline

• Describing validation models in PROMELA
(Protocol / Process Meta Language)

• Simulation with SPIN
(Simple Promela Interpreter)

• Adding correctness properties
(assertions, temporal claims)

• Validation with SPIN: Building and executing a verifier

6

‣ Online resources

• Lot’s of documents on www.spinroot.com, e.g.

• Tutorial: spinroot.com/spin/Doc/SpinTutorial.pdf

• Manual: spinroot.com/spin/Man/Manual.html

‣ Books:

• G. J. Holzmann: The SPIN Model
Checker: Primer and Reference
Manual, Addison-Wesley, 2003

• G. J. Holzmann, Design and Validation of
Computer Protocols, Prentice Hall, 1991

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Promela & SPIN References

7

http://www.spinroot.com
http://www.spinroot.com
http://spinroot.com/spin/Doc/SpinTutorial.pdf
http://spinroot.com/spin/Doc/SpinTutorial.pdf
http://spinroot.com/spin/Man/Manual.html
http://spinroot.com/spin/Man/Manual.html

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

PROMELA

‣ Process or Protocol Meta Language

‣ Description Language for describing validation models

‣ Application in reactive systems design (not only
communication protocols)

‣ Basis for model checking with SPIN

8

‣ Abstract model focusing on procedure rules
(i.e. the behavior of the protocol)

‣ based on the communicating finite state machine model

‣ simplified data messages and channels

‣ not an implementation language, but a system description
language

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Promela Model

9

process

procedure
rules

message
queues

process

procedure
rules

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Promela Model

‣ Building blocks:

• Processes (asynchronous)

• Message channels (buffered and unbuffered)

• Synchronizing statements

• Structured data

‣ No clock, no floating point numbers, limited arithmetic
functions

10

[Holzmann 2003]

mtype = { msg0, msg1, ack0, ack1 };

chan to_sender = [2] of { mtype };
chan to_receiver = [2] of { mtype };

proctype Sender()
{
 again:
 to_receiver!msg1;
 to_sender?ack1;
 to_receiver!msg0;
 to_sender?ack0;
 goto again
 }

proctype Receiver()
{
 again:
 to_receiver?msg1;
 to_sender!ack1;
 to_receiver?msg0;
 to_sender!ack0;
 goto again
}

init{ run Sender(); run Receiver(); }

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example

11

channel declaration

type declaration

send statement

process declaration

init process

receive statement

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Elements of a PROMELA Model

‣ Type declarations

‣ Channel declarations

‣ Variable declarations

‣ Process declarations

‣ The init process
(optional)

12

mtype = { msg, ack }

chan StoR = ...
chan RtoS = ...

proctype Sender(chan in; chan out)
{
 bit sendBit, rcvBit;
 ...
}

init
{
 run Sender(RtoS, StoR);
 ...
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Elements of a PROMELA Model

13

init

channel C2

channel C1

channel C3

process A
process B

process C

run

send receive

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Processes (1)

‣ Building block of a Promela Model

‣ defined by a proctype definition

‣ Processes contain a list of statements

‣ ... and communicate via channels or via global variables

14

proctype Sender(chan in, out) {
 byte o,i;
 in?next(o);
 do
 ::in?msg(i) -> out!ack(o)
 ::in?err(i) -> out!nack(o)
 od
}

body

local variables

parameters

I/O statement

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Processes (2)

‣ Processes run concurrently

‣ They are created by the run statement at any point
(within the init process or any other process)

‣ ... or automatically by putting the active keyword in front
of the proctype definition

‣ Several instances of the same type may be created

15

active[3] proctype Sender(...) {
 ...
}

init {
 int pid = run Receiver(Rin, Rout)
}

run returns the process ID

number of instances to be created

initial process
(similar to the main
function in C)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Execution constraints

‣ Optional: Priorities and Constraints

‣ Priorities change the probability of execution in random
simulations (default = 1; higher number = higher priority).

• specified in proctype declarations or run-statements

‣ The provided clause constrains the execution with a
global expression

16

byte a;

active proctype Sender(...) priority 2 provided (a > 1)
{
 ...
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Data types and variables

17

[Holzmann 2003]

‣ Basic data types: see table

‣ Arrays (one-dimensional)
 byte a[16];

‣ Records
 typedef Msg {
 int n1; int n2
 }

 Msg m;

‣ Variables are declared as in C

‣ Default initialization: 0

Type Range

bit
bool
byte
chan
mtype
pid
short
int
unsigned

0,1
false,true
0..255
1..255
1..255
0..255
-215..215-1
-231..231-1
0..2n-1 (1≤n≤32)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Statements and Executability

‣ A process contains a sequence of statements, which are

• assignments, e.g. a = b, or

• expressions, e.g. (a==b)

‣ Statements are either executable (enabled) or blocked.

‣ Assignments are always executable

‣ An expression is executable, if its evaluation is non-zero
Examples:
 x >= 0 /* executable, if x is non-negative */
 3 < 2 /* always blocked */

 x - 1 /* executable, if x != 1 */

18

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Special Statements

‣ skip statement: do nothing, always executable

‣ run statement: only executable if a new process can be

created

‣ goto statement: jump to a label, always executable

‣ assert statement: used to check certain properties,
always executable

19

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Control Flow

‣ Statements are separated by “;” or “->”

‣ Case selection
 if
 :: (choice1) -> statement1a; statement1b
 :: (choice2) -> statement2a; statement2b
 fi

‣ Repetition
 do
 :: statement1;
 :: (condition) -> break
 od

‣ Jumps: goto label

20

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Case selection (1)

‣ Only one sequence is executed required that the first
statement is executable

‣ If more than one choice is executable, one sequence is
chosen randomly and executed

‣ If no choice is executable, then the if-statement is blocked

‣ Here, the separator -> is used to separate guards from
the rest of the statement sequence

21

 if
 :: (choice1) -> statement1a; statement1b
 :: (choice2) -> statement2a; statement2b
 fi

guard statement

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Case selection (2)

‣ The else statement becomes executable, if all other
guards are blocked.

22

 if
 :: (choice1) -> statement1a; statement1b
 :: (choice2) -> statement2a; statement2b
 :: else -> statement3
 fi

guard statement

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Repetitions

‣ do-statements behave like if-statements, but with
repeating the choice

‣ The do-statement (do-loop) is ended by break

23

 do
 :: (condition1) -> statement1a; statement1b
 :: (condition2) -> statement2a; statement2b
 :: (condition3) -> break
 od

 do
 :: (condition) -> statement
 :: else -> break
 od

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Jumps and Labels

‣ Statements and control flow constructs can be preceded
by a label

‣ Labels can be the destination of goto jumps

‣ As labels have to precede a statement, a jump to the end
of the program can be realized by
 goto lastlabel;
 ...
 lastlabel: skip

‣ There are special labels used in verification with the

prefixes accept, end, and progress

24

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Escape sequences

‣ Statements of the first sequence are repeated until the first
statement in the unless-block (guard statement) becomes

executable

25

 {
 statement_sequence_1;
 }
 unless { guard; statement_sequence_2 }

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timeouts

‣ The timeout statement becomes executable, if all other
statements are blocked.

26

proctype watchdog() {
do
:: timeout -> guard_channel!reset
od
}

Example: A process that sends a reset signal to a
guard channel in case of a timeout [Holzmann 1991]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Channels

‣ Communication is modeled by sending and receving
messages to and from channels

‣ Channels are FIFO message queues

‣ Declaration (with Initializer):
 chan name = [capacity] of {list of types}

Examples:
 chan a; /* basic declaration */
 chan b[3]; /* array of channels */
 chan c = [4] of {byte,int}

‣ Channels have to be initialized before they can be used

27

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Channels and message fields

‣ Channel initialization with message fields:
 chan c = [4] of {byte,int}
 chan d = [1] of {mtype, short, bit}

‣ ... and the corresponding I/O statements:
 c!expr1,expr2
 d!msg,var1,var2

 d!msg(var1,var2) /* alternative notation */

‣ By convention, the first field should specify the message

type.

28

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Message type definitions

29

‣ Messages types are declared using mtype:
 mtype = {msg, ack, error}

‣ This defines and enumeration of three symbolic

constants, which can be used later, e.g.:
 mtype n = msg;

‣ Messages can carry variables (if the channel allows it)

 byte data;
 out!msg(data)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Message passing

‣ Send statement: The statement
 ch!expr

sends the value of the expression expr to the channel ch.
The expression can be a message variable. It is

executable, if the channel is not full.

‣ Receive statement: The statement
 ch?msg

receives a message from a channel and stores it into a the
variable msg. It is executable, if the channel is not empty.

30

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Conditional receive

‣ The receive statement with constant expressions
 ch?const1,const2

removes the first message from the channel if the
constants are matching with the message content.

It is allowed to mix constant and variables:
 ch?const1,var

31

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Sorted Send and Random Receive

‣ Sorted Send - Inserting messages in sorted numerical

order (instead of FIFO):

 channel!!msg

‣ Random Receive - Retrieving random messages from a

queue (instead of taking the first elemement out):

 channel??msg

Random receive yields the first matching message

32

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Channel polling

‣ The receive statement
 ch!<x,y>

writes the message fields into the local variables x and y,
but does not remove the message from the channel

‣ Testing without receiving: The statement
 ch![msg]

is executed if there is a matching message, but the
message is not removed from the channel.

33

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Operations on Channels

‣ Operations on channels
 len(ch) /* number of messages stored in ch */
 empty(ch)

 full(ch)

‣ Example: testing if there is space in the channel before

sending a message:
 !full(ch) -> ch!msg

34

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Race conditions

‣ Potential side-effects when using conditions, e.g.
 (len(ch) > 0) -> ch?msg
 ch?[msg] -> ch?msg

‣ In both cases, the second statement ch?msg is not
necessarily executable after the first one! Other processes
might access the channel in between.

‣ Solution:
 atomic { ch?[msg] -> ch?msg }

35

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Atomic sequences

‣ Sequences can be declared as atomic:

• Examples:
 atomic{ run A; run B }
 atomic { ch?[msg] -> ch?msg }

• The sequence may be non-deterministic

‣ Efficient alternative: d_step { sequence }

• Deterministic indivisible sequence

• No jumps into or from this sequence

36

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Test and Set (1)

‣ Problem: What is the resulting state?

37

 byte state = 1;

 proctype A()

 {

 (state==1) -> state = state+1

 }

 proctype B()

 {

 (state==1) -> state = state-1

 }

 init {

 run A(); run B()

 }

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Test and Set (2)

‣ Solution: atomic statements

38

 byte state = 1;

 proctype A()

 {
 atomic {

 (state==1) -> state = state+1

 }

 }

 proctype B()

 {
 atomic {

 (state==1) -> state = state-1

 }

 }

 init {

 run A(); run B()

 }

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Rendezvous Communication

‣ Rendezvous port (instead of asynchronous communication)
 chan port = [0] of {byte}

‣ Zero-capacity channel, messages cannot be stored

‣ Example:

39

#define msgtype 33

chan port = [0] of { byte, byte };

active proctype A()
{ port!msgtype(101);
 port!msgtype(102) /* not executable */
}

active proctype B()
{ byte state;
 port?msgtype(state)
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Macros

‣ Promela models are processed by the C preprocessor, this
allows to define

• Constants
#define MAX 16

• Macros
#define dummy(a,b) (a+b)

• (De-)activation of code fragments
#define ACTIVATED 1

#ifdef ACTIVATED

#else
#endif

40

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Inline definitions

‣ Textual replacement

‣ Similar to macro definitions

‣ Cannot be used as an expression

‣ Inline sequence should not contain variable definitions

41

 init {
 int a,b,c;

 c = a;
 a = b;
 b = c
 }

 inline swap(x,y) {
 c = x;
 x = y;
 y = c
 }

 init {
 int a,b,c;

 swap(a,b)
 }

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Assertions

‣ Assertions are inserted into the program code

‣ Basic assertion:
 assert(expression)

‣ (there are also trace assertions)

‣ Assertions = correctness properties

‣ can be checked during simulation

(other types of correctness properties require to run SPIN
in validation mode)

42

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Input and Output

‣ Output can be generated using printf() as in C.

‣ Input is possible by reading integer numbers from STDIN.

• Possibility of user-guided simulations

• Usually, the model should be closed

43

mtype = { msg0, msg1, ack0, ack1 };

chan to_sender = [2] of { mtype };
chan to_receiver = [2] of { mtype };

active proctype Sender()
{
 again:
 to_receiver!msg1;
 to_sender?ack1;
 to_receiver!msg0;
 to_sender?ack0;
 goto again
}

active proctype Receiver()
{
 again:
 to_receiver?msg1;
 to_sender!ack1;
 to_receiver?msg0;
 to_sender!ack0;
 goto again
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: ABP in Promela

A simplified version of the
Alternating Bit Protocol in Promela

44

[Holzmann 2003]

Sender

Receiver

q3q0

q2q1

!msg0

?ack1

!msg1

?ack0

q0 q3

q1 q2

!ack0

?msg1

!ack1

?msg0

to_receiver

to_sender

queue

queue

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

What is this good for?

45

‣ Promela models can be simulated and automatically
validated by the SPIN model checker

‣ SPIN (Simple Promela Interpreter)

• developed by Gerard J. Holzmann, Bell Labs

• open source

• Command line or Tcl/Tk GUI (XSpin)

‣ Download: http://spinroot.com/spin/Src/

http://www.spinroot.com
http://www.spinroot.com

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Simulating ABP with SPIN

46

mtype = { msg0, msg1, ack0, ack1 };

chan to_sender = [2] of { mtype };
chan to_receiver = [2] of { mtype };

active proctype Sender()
{
 again:
 to_receiver!msg1;
 to_sender?ack1;
 to_receiver!msg0;
 to_sender?ack0;
 goto again
}

active proctype Receiver()
{
 again:
 to_receiver?msg1;
 to_sender!ack1;
 to_receiver?msg0;
 to_sender!ack0;
 goto again
}

[Holzmann 2003]

> spin -c -u14 abp.pml
proc 0 = Sender
proc 1 = Receiver
q\p 0 1
 1 to_receiver!msg1
 1 . to_receiver?msg1
 2 . to_sender!ack1
 2 to_sender?ack1
 1 to_receiver!msg0
 1 . to_receiver?msg0
 2 . to_sender!ack0
 2 to_sender?ack0
 1 to_receiver!msg1
 1 . to_receiver?msg1
 2 . to_sender!ack1
 2 to_sender?ack1

depth-limit reached

final state:

#processes: 2
 queue 2 (to_sender):
 queue 1 (to_receiver):
[msg0]
 15: proc 1 (Receiver) line 21
"abp.pml" (state 3)
 15: proc 0 (Sender) line 12
"abp.pml" (state 4)
2 processes created

!"#$%&'()#*$%+,-,.%!!%/0%1'2'34'(%/556%!!%74","38%!!%9!:%!!%-

5 -;<'2'#='(5 5;!'$>'(
-?*@('2'#='(A3)B-

/ ?*@('2'#='(C3)B-

0 ?*@)'$>'(A72D-

E ?*@)'$>'(C72D-

+?*@('2'#='(A3)B5

F ?*@('2'#='(C3)B5

. ?*@)'$>'(A72D5

6 ?*@)'$>'(C72D5

-5?*@('2'#='(A3)B-

-/ ?*@('2'#='(C3)B-

-0 ?*@)'$>'(A72D-

-E ?*@)'$>'(C72D-

-+?*@('2'#='(A3)B5

-F ?*@('2'#='(C3)B5

-. ?*@)'$>'(A72D5

-6 ?*@)'$>'(C72D5

/-?*@('2'#='(A3)B-

// ?*@('2'#='(C3)B-

/0 ?*@)'$>'(A72D-

/E ?*@)'$>'(C72D-

/+?*@('2'#='(A3)B5

/F ?*@('2'#='(C3)B5

/. ?*@)'$>'(A72D5

/G ?*@)'$>'(C72D5

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Goodies: Generating MSCs

47

mtype = { msg0, msg1, ack0, ack1 };

chan to_sender = [2] of { mtype };
chan to_receiver = [2] of { mtype };

active proctype Sender()
{
 again:
 to_receiver!msg1;
 to_sender?ack1;
 to_receiver!msg0;
 to_sender?ack0;
 goto again
}

active proctype Receiver()
{
 again:
 to_receiver?msg1;
 to_sender!ack1;
 to_receiver?msg0;
 to_sender!ack0;
 goto again
}

[Holzmann 2003]

> spin -M -u steps

line 10

line 11

line 12

 to_receiver!msg1 [(2,2)]

state 1 line 9 is a loopstate

 to_sender?ack1 [(1,3)]

 to_receiver!msg0 [(2,2)]

 to_sender?ack0 [(1,3)]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Goodies: Generating a state chart

48

mtype = { msg0, msg1, ack0, ack1 };

chan to_sender = [2] of { mtype };
chan to_receiver = [2] of { mtype };

active proctype Sender()
{
 again:
 to_receiver!msg1;
 to_sender?ack1;
 to_receiver!msg0;
 to_sender?ack0;
 goto again
}

active proctype Receiver()
{
 again:
 to_receiver?msg1;
 to_sender!ack1;
 to_receiver?msg0;
 to_sender!ack0;
 goto again
}

[Holzmann 2003]

XSPIN:
1. Run -> View state
automaton
2. Select process

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Lessons learned

‣ A validation model is an abstract system model

‣ Models are no timed. Any possible sequence of process
interaction will be checked.

‣ We describe validation models in Promela, based on
communicating (extended) finite state machines

‣ Special constructs in Promela: Statements and their
executability

49

