
University of Freiburg
Computer Networks and Telematics

Summer 2009

Network Protocol Design
and Evaluation

05 - Validation, Part III

Stefan Rührup

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Overview

‣ In the first parts of this chapter:

• Validation models in Promela

• Defining and checking correctness claims with SPIN

‣ In this part:

• Correctness Claims with Linear Temporal Logic

• Example (continued): Validation of the Alternating Bit
Protocol with LTL and SPIN

2

ABPslides referring to this example are marked with

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Temporal Logic

‣ Transforming requirements into never claims is not always easy

‣ A more convenient way of formalization is by using

Linear Temporal Logic (LTL)

‣ Example for describing a valid execution sequences:
Every state satisfying p is eventually followed by one which

satisfies q.
In LTL: ◻(p → ◊q)

‣ LTL formulae are often easier to understand than never claims

3

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Motivation: LTL and Validation (1)

‣ Example (Alternating Bit Protocol):
We want to assert that a data

message is finally received (unless
there is an error cycle)

‣ More precisely: After a message
has been sent, there might be
errors and retransmissions until it
is received by the receiver or an
error occurs infinitely often

‣ We can express this in LTL ...

4

sd ABP

Sender Receiver

data(a,1)

err ACCEPT

data(a,1)

data(b,0)

ack(0)

ACCEPT

FETCH

ack(1)

FETCH

ACCEPT

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Desired Behaviour (1)

5

‣ Every data message sent is finally received by the receiver

Sender Receiverlower layer

ack(0)

data(a,1)
error

ack(0) or error

data(a,1)

ds

dr
data(a,1)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Desired Behaviour (2)

6

‣ But there might be an error cycle due to repeated message
distortion by the lower layer

Sender Receiverlower layer

ack(0)

data(a,1)
error

ack(0)

data(a,1)
error

ds

err

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Desired Behaviour (3)

7

‣ However, between sending and receiving a data message, there is
no other data message transmitted

Sender Receiverlower layer

data(a,1)ds

dr
data(a,1)

no data message with other
content

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Motivation: LTL and Validation (2)

‣ Claim: After a message x has been sent, there might be
errors and retransmissions (but no other data is sent) until x

is received by the receiver or an error occurs infinitely often

‣ We define:
 ds - data sent, dr - data received

 od - other data sent (with other content),

 err - error message received

‣ A little bit more formal:

Always after ds there is no od until (dr or err)

‣ In LTL: ◻(ds → ¬od U (dr ∨ err))

(Always ds implies not od until (dr or err)

8

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Temporal Logic

‣ Why “Temporal Logic”?

‣ Logic formulas expressing some system properties are not
statically true or false

‣ Formulas may change their truth values dynamically as the
system changes its state

→ Temporal Logic

‣ LTL formulae are defined over infinite transition sequences

(“runs”). Linear refers to single sequential runs

9

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL Formulae

‣ LTL extends propositional logic by modal operators

‣ Well-formed LTL formulae

• Propositional state formulae, including true or false are
well-formed

• If p and q are well-formed formulae, then α p, p β q,

and (p) are well-formed formulae, where α and β are
unary/binary temporal operators

‣ Grammar:
ltl ::= operand | (ltl) | ltl binary_operator ltl |
 unary_operator ltl

(where operand is either true, false, or a user-defined symbol)

10

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Linear Temporal Logic

‣ LTL Operators:

11

Operator Description Definition

X
U
U
◻
◊

Next
Weak Until
Strong Until
Always
Eventually

σ[i] ⊨ X p ⇔ σi+1 ⊨ p
σ[i] ⊨ (p U q) ⇔ σi ⊨ q ∨ (σi ⊨ q ∧ σ[i+1] ⊨ (p U q))
σ[i] ⊨ (p U q) ⇔ σi ⊨ (p U q) ∧ ∃ j, j≥i σj ⊨ q
σ ⊨ ◻p ⇔ σ ⊨ (p U false)
σ ⊨ ◊p ⇔ σ ⊨ (true U p)

σi = i-th element of the run σ
σ[i] = suffix of σ starting at the i-th element

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL Operators (1)

‣ Next

X p = Property p is true in the following state

12

Operator Description Definition

X Next σ[i] ⊨ X p ⇔ σi+1 ⊨ p

p

Operator Description Definition

W
U

Weak Until
Strong Until

σ[i] ⊨ (p W q) ⇔ σi ⊨ q ∨ (σi ⊨ q ∧ σ[i+1] ⊨ (p W q))
σ[i] ⊨ (p U q) ⇔ σi ⊨ (p W q) ∧ ∃ j, j≥i σj ⊨ q

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL Operators (2)

‣ Until

p U q = Property p holds until q becomes true. After that p
does not have to hold any more. Weak until does not
require that q ever becomes true

13

p qpp

ppp

(weak and
 strong until)

(allowed in
 weak until)

Operator Description Definition

◻
◊

Always (also called Globally, G)
Eventually (also called Finally, F)

σ ⊨ ◻p ⇔ σ ⊨ (p W false)
σ ⊨ ◊p ⇔ σ ⊨ (true U p)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL Operators (3)

‣ Always and Eventually

◻p = Property p remains invariantly true.

◊p = Property p becomes eventually true at least once in a run

14

p ppp
(always)

(eventually)

p

p

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL Rules

15

LTL Formula Equivalent

¬◻p
¬◊p
◻(p ∧ q)

◊(p ∨ q)

¬(p U q)
p U (q ∨ r)
(p U q) ∨ r

◻◊(p ∨ q)

◊◻(p ∧ q)

◊¬p
◻¬p
◻p ∧ ◻q

◊ p ∨ ◊ q

¬q W (¬p ∧ ¬q)
(p U q) ∨ (p U r)

(p U r) ∨ (p U r)

◻◊p ∨ ◻◊q

◊◻p ∧ ◊◻q

[Holzmann 2003]

Alternative definition of Weak Until

p W q ≡ (p U q) ∨ ◻p

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Using LTL (1)

‣ A simple property: Every system state in which p is true

is eventually followed by a system state in which q is true

‣ Can’t we simply express this by the implication p → q ?

‣ No, p → q has no temporal operators. It is simply (!p ∨ q)
and applies as a propositional claim to the first system
state.

16

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Using LTL (2)

‣ We can apply this claim to all states by using the always
operator:

 ◻(p → q)

‣ There is still the temporal implication missing: “q is
eventually reached”:

 ◻(p → ◊q)

17

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Standard Correctness Properties

18

LTL Formula English Type

◻p
◊p
p → ◊q
p → q U r
◻◊p

◊◻p

◊p → ◊q

always p
eventually p
p implies eventually q
p implies q until r
always eventually p
eventually always p
eventually p implies eventually q

Invariance
Guarantee
Response
Precedence
Recurrence (progress)
Stability (non-progress)
Correlation

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL in SPIN

‣ Spin accepts ...

• propositional symbols, including true and false

• temporal operators always ([]), eventually (<>), and
strong until (U)

• logical operators and (&&), or (||) and not (!)

• Implication (->) and equivalence (<->)

‣ Arithmetic and relational expressions are not supported
But they can be replaced by a propositional symbol.
Example: #define q (seqno <= last + 1)

19

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Using LTL with SPIN

‣ Specify an LTL property

‣ Generate symbols: #define p expression

‣ Generate a never claim:
 spin -f ‘LTL formula’ >> claim.ltl

‣ Validate your model:

• Generate the verifier:
 spin -a model.pml -N claim.ltl

• Compile and run the verifier

‣ Recommendation: Use the LTL property manager of XSPIN

20

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example

21

‣ The LTL formula [](p -> <>q) can be translated into the
following never claim:

never { /* ![](p -> <>q) */

T0_init:

 if

 :: (! ((q)) && (p)) -> goto accept_S4

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: (! ((q))) -> goto accept_S4

 fi;

}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The LTL Property
Manager of XSPIN

22

LTL formula

SPIN will ask for
definitions of unknown
symbols if not specified

3

1

2

4

The never claim
generated from the
negated LTL formula

Output of the verifier

Result of verification

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example: Validation of ABP with LTL

‣ Overview

1. Build the Promela model (alternating.pml)

2. Define symbols ds (data sent), dr (data received), ...

3. Define the correctness claim in LTL:
◻ds → ¬od U (dr ∨ err)

4. Generate a never claim
spin -f “)” >> alternating.ltl

5. Generate the verifier
spin -a alternating.pml -N alternating.ltl

6. Build an run the verifier

23

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Validation of ABP with LTL

‣ Overview

1. Build the Promela model (alternating.pml)

2. Define symbols ds (data sent), dr (data received), ...

3. Define the correctness claim in LTL:
◻ds → ¬od U (dr ∨ err)

4. Generate a never claim
spin -f “)” >> alternating.ltl

5. Generate the verifier
spin -a alternating.pml -N alternating.ltl

6. Build an run the verifier

24

ABP

done ✓

XSPIN

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Defining Symbols (1)

‣ Symbols have to be defined for

 ds - data sent

 dr - data received

 od - other data sent (with other content),
 err - error message received

‣ These symbols refer to receive operations on message
channels

‣ Executability of any such operation can be expressed by
the poll statement:

 channel?[message]

25

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Defining Symbols (2)

26

#define N 2
#define MAX 8
#define FETCH mt = (mt+1)%MAX
#define ACCEPT assert(mr==(last_mr+1)%MAX)

mtype = { data, ack, error }

proctype lower_layer(chan fromS, toS, fromR, toR) {...}
proctype Sender(chan in, out) {...}
proctype Receiver(chan in, out) {...}

chan fromS = [N] of { byte, byte, bit };
chan toR = [N] of { byte, byte, bit };
chan fromR = [N] of { byte, bit };
chan toS = [N] of { byte, bit };

init {
 atomic {
 run Sender(toS, fromS);
 run Receiver(toR, fromR);
 run lower_layer(fromS, toS, fromR, toR) }
}

ABP

Recall: Sender and
Receiver are connected
via these four channels

These channels have to
be defined globally

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Defining Symbols (3)

‣ Symbols to be defined:
ds - data sent, dr - data received

od - other data sent, err - error message received

27

ABP

byte x,y

#define ds (toR?[data(x,_)])

#define dr (fromS?[data(x,_)])

#define od (fromS?[data(y,_)] && y != x)

#define err (fromS?[error(_,_)] || fromR?[_,_])

data message with content
x arrives at lower layer

correct reception

no assumption about
the alternating bit

this is to cover arbitrary
receive events by the sender
(errors or acks with wrong
alternating bit)

the receiver gets a
distorted message

the receiver gets data
message with incorrect
content

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Defining Symbols (4)

‣ Symbols to be defined:
ds - data sent, dr - data received

od - other data sent, err - error message receiveden

‣ Alternative definition with constant values:

28

ABP

#define N 2
#define MAX 3
#define FETCH mt = (mt+1)%MAX
#define ACCEPT assert(mr==(last_mr+1)%MAX)

#define ds (toR?[data(0,_)])

#define dr (fromS?[data(0,_)])

#define od (fromS?[data(1,_)] || fromS?[data(2,_)])

#define err (fromS?[error(_,_)] || fromR?[_,_])

data content restricted
to values {0,1,2}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Generating the never claim (1)

29

‣ The never claim captures the negated LTL formula

‣ Negation:

 ¬◻(ds → ¬od U (dr ∨ err))

 ⇔
 ◊¬(ds → ¬od U (dr ∨ err))

 ⇔
 ◊¬(¬ds ∨ (¬od U (dr ∨ err)))

 ⇔
 ◊(ds ∧ ¬(¬od U (dr ∨ err)))

 ⇔
 ◊(ds ∧ (¬(dr ∨ err) W (od ∧ ¬(dr ∨ err)))

 ⇔
 ◊(ds ∧ ((¬dr ∧ ¬err) W (od ∧ ¬dr ∧ ¬err))

‣ Luckily, SPIN can do the negation and generate the never

claim from the negated formula

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Generating the never claim (2)

30

never { /* !([] (ds -> (!od) U (dr || err))) */

T0_init:

 if

 :: (! ((dr)) && ! ((err)) && (ds)) -> goto accept_S4

 :: (! ((dr)) && ! ((err)) && (ds) && (od)) -> goto accept_all

 :: (1) -> goto T0_init

 fi;

accept_S4:

 if

 :: (! ((dr)) && ! ((err))) -> goto accept_S4

 :: (! ((dr)) && ! ((err)) && (od)) -> goto accept_all

 fi;

accept_all:

 skip

}

ABP

[] (ds -> (!od) U (dr || err))LTL:

SPIN

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Validation with XSPIN

31

ABP

... Result: valid.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timelines

‣ A further method to define temporal claims: Timelines

‣ Timelines define causal relations between events

‣ Graphical
representation:

‣ The Timeline Editor

‣ Download: http://www.bell-labs.com/project/timeedit/

‣ [Smith, Holzmann, Etessami: “Events and Constraints a graphical editor
for capturing logic properties of programs”, RE’01, pp. 14-22, Aug. 2001]

32

http://www.bell-labs.com/project/timeedit/
http://www.bell-labs.com/project/timeedit/

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example (1)

33

‣ Requirement:
When the user lifts the receiver, the phone should provide

a dialtone. (There are no intervening onhook events)

‣ Timeline specification:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example (2)

34

‣ Requirement: When the user lifts the receiver, the phone
should provide a dialtone.

In LTL: ¬(¬offhook U (offhook ∧ X◻(¬dialtone ∧ ¬onhook)))

regular event required event

constraint

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Timeline Editor (1)

35

‣ Timeline specification:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Timeline Editor (2)

36

‣ TimeEdit generates never claims:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The Timeline Editor (3)

37

‣ ... and shows the corresponding automaton:

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Timeline Specification

‣ Timeline specifications are less expressive than LTL

‣ However, it is sometimes easier to describe simple event
sequences by timelines.

38

LTL

Timelines

never claims
(ω-regular)

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Behind the Scenes

‣ How does SPIN check correctness properties that are
specified by LTL formulae or never claims?

‣ Promela models describe processes, which are
communicating finite state machines

‣ Processes can be described by finite automata. The

product of the process automata gives the state space.

‣ Never claims are processes as well. An accepting run of

the never claim states a violation of the claim.

39

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Acceptance

‣ With the standard notion of acceptance we cannot
express ongoing, potentially infinite executions.

‣ Standard acceptance

An accepting run of a finite state automaton is a finite
transition sequence leading to an accepting end state

‣ Here we deal with infinite transition sequences,

called ω-runs.

40

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Büchi Acceptance

‣ Büchi acceptance (Omega acceptance)

An accepting ω-run of a finite state automaton is any
infinite run containing an accepting state.

‣ Büchi automata accept input sequences that are defined
over infinite runs: A Büchi automaton accepts if and only if
an accepting state is visited infinitely often.

‣ How to accept “normal” end states?

Stutter extension: Each end state is extended by a
predefined null-transition as a self-loop.

41

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

LTL and Automata

‣ LTL has a direct connection to Büchi automata:
It can be shown that for every LTL formula there exists a

Büchi automaton that accepts exactly the runs specified
by the formula.

‣ SPIN translates LTL formulae into never claims, which
represent Büchi automata. The verifier then checks
whether the Büchi automaton matches a run of the system
(i.e. a path in the reachability graph)

42

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example 1

43

‣ The LTL formula [](p -> <>q) with the corresponding
never claim (negated!) and the Büchi automaton

never { /* ![](p -> <>q) */
T0_init:
 if
 :: (! ((q)) && (p)) -> goto accept_S4
 :: (1) -> goto T0_init
 fi;
accept_S4:
 if
 :: (! ((q))) -> goto accept_S4
 fi;
}

T1T0 !q
!q || p

true

‣ Correctness of ABP:

LTL formula, Never claim, and Büchi Automaton

never { /* !([] (ds -> (!od) U (dr || err))) */
T0_init:
 if
 :: (! (dr) && ! (err) && (ds)) -> goto accept_S4
 :: (! (dr) && ! (err) && (ds) && (od)) -> goto accept_all
 :: (1) -> goto T0_init
 fi;
accept_S4:
 if
 :: (! (dr) && ! (err)) -> goto accept_S4
 :: (! (dr) && ! (err) && (od)) -> goto accept_all
 fi;
accept_all:
 skip
}

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example 2

44

T1
od ∧ !dr
∧ !err

true!dr ∧ !err

T2

true

ds ∧ !dr
 ∧ !err

T0

ds ∧ od
 ∧ !dr ∧ !err

ABP

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

How SPIN checks Never Claims

45

p1

Processes

Asynchronous interleaving
product of automata PPROMELA model

[G.J. Holzmann: “The Model Checker SPIN”, IEEE
Transactions on Software Engineering, 23(5), 1997]

State Space
(Reachability Graph)

s11

s21

s12

s22 Synchronous
product

Büchi
Automaton B

LTL
Requirements

Product
Automaton

P⊗B

If L(P⊗B) ≠ ∅ then
the claim is violated

s32

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Automata Products

‣ A product automaton consists of the Cartesian product of
the state sets of the involved automata and transitions

‣ Asynchronous Product

• All possible interleavings of the processes of a system
are described by an asynchronous product.

‣ Synchronous Product

• Synchronous executions (processes and never claims)
are represented by a synchronous product.

46

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Example Model

‣ Two processes using the “Half Or Triple Plus One” Rule.

47

#define N 4

int x = N;

active proctype Odd()
{
 do
 :: (x%2) -> x = 3*x+1;
 od;
}

active proctype Even()
{
 do
 :: !(x%2) -> x = x/2;
 od;
}

Side note:

Collatz conjecture states
that for all N ≥ 1 the
sequences converge to 1.

The processes produce so-
called hailstone sequences.

N x1,x2,...

1
2
3
4
5

1
2, 1
3, 10, 5, 16, 8, 4, 2, 1
4, 2, 1
5, 16, 8, 4, 2, 1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The State Space (1)

‣ The state space (reachability graph) for the HOTPO model,

obtained from the asynchronous product of the process

automata

48

(x%2) !(x%2)

o0

o1

e0

e1

Odd Even

x=3x+1 x=x/2

o0,e0 o0,e1

o1,e0 o1,e1

(x%2) x=3x+1

!(x%2)

x=x/2

(x%2) x=3x+1

!(x%2)

x=x/2

Automata for Even and Odd Asynchronous product of the automata

[Holzmann 2003]

(unreachable)

Expanded asynchronous product

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

The State Space (2)

‣ Expanding the asynchronous product for N=4

49

(x%2)

x=3x+1

!(x%2)

x=x/2

o0,e0
x=4

o0,e1
x=4

o1,e0
x=1

o0,e0
x=1

!(x%2)

o0,e0
x=2

o0,e1
x=2

x=x/2

[Holzmann 2003]

o0,e0 o0,e1

o1,e0 o1,e1

(x%2) x=3x+1

!(x%2)

x=x/2

(x%2) x=3x+1

!(x%2)

x=x/2

Asynchronous product of the automata

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Asynchronous product

‣ An asynchronous product of finite state automata A1..An is

a finite state automaton A = (Q,q0,L,T,F), with

• Q = Q1 × ... × Qn, the Cartesian product of the state sets

• q0 = (q01, ... , q0n), the tuple holding all start states

• L = L1 ∪ ... ∪ Ln, the union of all label sets (accept-state,

end-state, and progress labels).

• T = set of transitions t = ((p1, ..., pn), l, (q1, ..., qn)) where
there is exactly one automaton Ai having (pi, l, qi) as a
transition labeled with l (∀ j≠i: pj = qj).

• F = set of states q = (q1, ..., qn) where at least one of the
automata states q1, ..., qn is a final state.

50

[Holzmann 2003]

#define p (x==1)

never { /* !<>[]p */
T0_init:
 if
 :: (!(p)) -> goto accept_S1
 :: true -> goto T0_init
 fi;
accept_S1:
 if
 :: true -> goto T0_init
 fi;
}

Never claim

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Checking correctness (1)

‣ First, we define a never claim stating that x eventually

becomes 1 (This is not true, as the sequence 1,4,2,1,4,2,...

will repeat infinitely often).

51

(x≠1)

true

s0

true

s1

Automaton B

Expanded asynchronous product A

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Checking correctness (2)

‣ Correctness of a never claim is checked by computing the

synchronous product of the state space automaton and

the claim automaton

52

(x%2)

x=3x+1

!(x%2)

x=x/2

o0,e0
x=4

o0,e1
x=4

o1,e0
x=1

o0,e0
x=1

!(x%2)

o0,e0
x=2

o0,e1
x=2

x=x/2

[Holzmann 2003]

Automaton B

(x≠1)

true

s0

true

s1

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Synchronous product

‣ A synchronous product of finite state automata P and B is

a finite state automaton A = (Q,q0,L,T,F), with

• Q = QP’ × QB, the Cartesian product of the state sets,
where P’ is the stutter-closure of P having empty self-

loops attached to every state without successor.

• q0 = (q0P’, q0B), the tuple holding both start states

• L = LP’ × LB, the product of both label sets.

• T = set of transitions t = (tP’,tB) where tP’ ∈ TP, tB ∈ TB

• F = set of states q = (qP’, qB) where qP or qB is a final
state.

53

[Holzmann 2003]

Synchronous product of A and B

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Checking correctness (3)

54

(x%2)

x=3x+1

!(x%2)

x=x/2

o0,e0
4,s0

o0,e1
4,s0

o1,e0
1,s0

o0,e0
1,s0

!(x%2)

o0,e0
2,s0

o0,e1
2,s0

x=x/2

!(x%2)

o0,e1
4,s1

o0,e0
2,s1

o0,e1
2,s1

!(x%2)

x=x/2

!(x%2)

(x%2)

o1,e0
1,s1

x=x/2

o0,e0
1,s1

o0,e0
4,s1

Automaton B

(x≠1)

true

s0

true

s1

The synchronous
product reflects the
synchronous execution
of automaton A with
the claim automaton B

Synchronous product of A and B

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Checking correctness (4)

55

(x%2)

x=3x+1

!(x%2)

x=x/2

o0,e0
4,s0

o0,e1
4,s0

o1,e0
1,s0

o0,e0
1,s0

!(x%2)

o0,e0
2,s0

o0,e1
2,s0

x=x/2

!(x%2)

o0,e1
4,s1

o0,e0
2,s1

x=x/2

o0,e1
2,s1

!(x%2)

x=x/2

!(x%2)

(x%2)

o1,e0
1,s1

x=x/2

o0,e0
1,s1 x=x/2

o0,e0
4,s1

There is an acceptance
cycle, i.e. an infinite
execution sequence
visiting an accept state.

Visiting such a state
where !p holds implies
that the claim is violated.

Acceptance cycles are
counter-examples to a
given claim.

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State Space Search (1)

56

p1

Processes

Asynchronous interleaving
product of automataPROMELA model

State Space
(Reachability Graph)

s11

s21

s12

s22
(on-the-fly

check)

s32

assertion
violation

[G.J. Holzmann: “The Model Checker SPIN”, IEEE
Transactions on Software Engineering, 23(5), 1997]

Checking Safety Properties:

DFS

s11

s12

s22

Stack trace

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State Space Search (2)

‣ SPIN checks safety properties
(assertions, deadlocks) while

the state space is constructed
(on the fly).

‣ The check can be done by a

standard DFS

57

Start() {
 Statespace.add(s0)
 Stack.push(s0)
 Search()
}

Search() {
 s = Stack.top()
 if !Safety(s) printStack()
 foreach successor t of s do
 if t not in Statespace then
 Statespace.add(t)
 Stack.push(t)
 Search()
 fi
 od
 Stack.pop()
}

[Holzmann 2003]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State Space Search (3)

‣ Liveness properties are connected to infinite runs and
cyclic behaviour. Cycles in the state space can be found

by a depth-first search.

‣ If an acceptance state is found and all successors of this

state have been explored, SPIN starts a Nested DFS in

order to check whether it can be reached from itself.

‣ The algorithm terminates after finding an acceptance cylce
or after the complete state space has been explored.

58

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State Space Search (4)

59

‣ Nested DFS for checking liveness properties:

The first DFS checks whether an accept state is
reachable. The second (nested) DFS checks, whether this
state is part of a cycle.

s0 si

DFS path

Nested
DFS path

accept
state

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

State Space Search (5)

‣ Cycles can be detected by Tarjan’s DFS algorithm, which
finds strongly connected components in linear time. It

assigns index numbers and so-called lowlink numbers to
nodes of the graph. (Lowlink numbers are the minimum index in
the connected component)

‣ SPIN uses a Nested DFS instead of this algorithm,

because the numbers to be stored require a huge amount
of memory as the state space might become very large
(billions of nodes).

‣ The Nested DFS requires storing each state only once and
uses 2 bits overhead per state.

‣ It cannot detect all cycles, but at least one cycle (if existing)

60

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Positive and Negative Claims

‣ Why does SPIN use negative claims (never claims)?

‣ Positive claim: Prove that the language of the system
automaton is included in the language of the claim

automaton. Drawback: The state space for language
inclusion has at most the size of the Cartesian product.

‣ Negative claim: Prove that the language of the automata

intersection is empty. Advantage: Smaller state space
(zero) in the best case.

61

[G.J. Holzmann: “The Model Checker SPIN”, IEEE
Transactions on Software Engineering, 23(5), 1997]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Efficiency of checking

‣ Efficiency for checking properties
(most efficiently first)

1. Assertions and end state labels

2. Progress state labels (search for non-progess cycles)

3. Accept-state labels (search for accept cycles)

4. Temporal claims

62

[Holzmann 1993]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Some Recipes

‣ Abstraction. You are constructing a validation model and

not an implementation. Try to make this model abstract.

‣ Redundancy. Remove redundant computations and

redundant variables (counters, “book-keeping” variables).
Everything that is not directly related to the property you are
trying to prove should be avoided.

‣ Channels. Reduce the capacity of asynchronous channels
to a minimum (2 or 3). Use synchronous channels where

possible.

63

[T.C. Ruys: “SPIN Tutorial: How to become a SPIN Doctor”]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Some more Recipes

‣ Make variables local if possible.

‣ Local computations should be merged into atomic or
d_step blocks.

‣ Non-deterministic random choices should be modeled
using an if-clause (having guard statements that are
executable at the same time).

‣ Lossy channels are modeled best by letting the sending
process lose messages or by a process that “steals”

messages.

64

[T.C. Ruys: “SPIN Tutorial: How to become a SPIN Doctor”]

Network Protocol Design and Evaluation
Stefan Rührup, Summer 2009

Computer Networks and Telematics
University of Freiburg

Lessons learned

‣ SPIN does not directly prove correctness. It tries to find
counterexamples to the specified correctness claims.

‣ Liveness properties are expressed by never claims or LTL
formulae. They require the largest computation overhead
for verification.

‣ Remember to keep the models abstract and simple!

65

