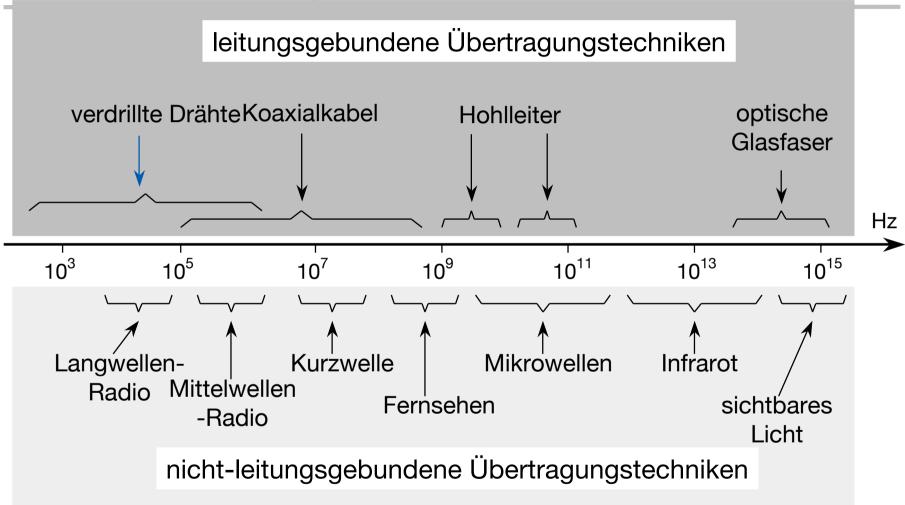
Systeme II

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Christian Schindelhauer

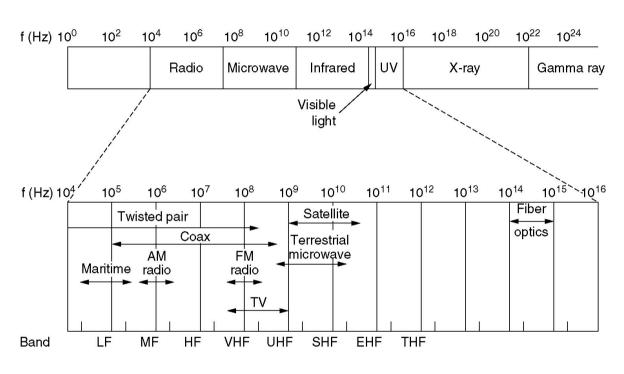
Sommersemester 2006

6. Vorlesung


11.04.2006

schindel@informatik.uni-freiburg.de

Das elektromagnetische Spektrum


Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Frequenzbereiche

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

LF Low Frequency = LW Langwelle

MF Medium Frequency = MW Mittelwelle

HF High Frequency = KW Kurzwelle

VHF Very High Frequency = UKW Ultrakurzwelle

UHF Ultra High Frequency
SHF Super High Frequency
EHF Extra High Frequency

UV Ultraviolettes LichtX-ray Röntgenstrahlung

Frequenzbänder für Funknetzwerke

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- >VHF/UHF für Mobilfunk
 - Antennenlänge
- >SHF für Richtfunkstrecken, Satellitenkommunikation
- ➤ Drahtloses (Wireless) LAN: UHF bis SHF
 - Geplant: EHF
- > Sichtbares Licht
 - Kommunikation durch Laser
- >Infrarot
 - Fernsteuerungen
 - Lokales LAN in geschlossenen Räumen

Ausbreitungsverhalten (I)

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

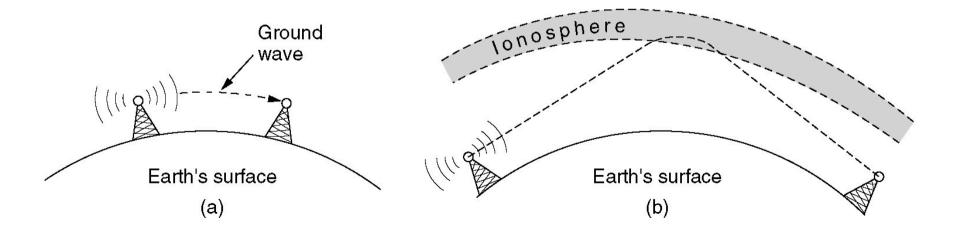
- ➤ Geradlinige Ausbreitung im Vakuum
- > Empfangsleistung nimmt mit 1/d² ab
 - Theoretisch, praktisch mit höheren Exponenten bis zu 4 oder 5
- > Einschränkung durch
 - Dämpfung in der Luft (insbesondere HV, VHF)
 - Abschattung
 - Reflektion
 - Streuung an kleinen Hindernissen
 - Beugung an scharfen Kanten

Ausbreitungsverhalten (II)

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻VLF, LF, MF-Wellen

- -folgen der Erdkrümmung (bis zu 1000 km in VLF)
- -Durchdringen Gebäude


>HF, VHF-Wellen

- -Werden am Boden absorbiert
- -Werden von der Ionosphäre in 100-500 km Höhe reflektiert

≻Ab 100 MHz

- -Wellenausbreitung geradlinig
- -Kaum Gebäudedurchdringung
- -Gute Fokussierung

≻Ab 8 GHz Absorption durch Regen

Ausbreitungsverhalten (III)

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Mehrwegeausbreitung (Multiple Path Fading)

- Signal kommt aufgrund von Reflektion, Streuung und Beugung auf mehreren Wegen beim Empfänger an
- Zeitliche Streuung führt zu Interferenzen
 - Fehlerhafter Dekodierung
 - Abschwächung

▶ Probleme durch Mobilität

- Kurzzeitige Einbrüche (schnelles Fading)
 - Andere Übertragungswege
 - Unterschiedliche Phasenlage
- Langsame Veränderung der Empfangsleistung (langsames Fading)
 - Durch Verkürzen, Verlängern der Entfernung Sender-Empfänger

Mehrfachnutzung des Mediums

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Raummultiplexverfahren

- Parallele und exklusive Nutzung von Übertragungskanäle
 - z.B. Extraleitungen/Zellen/Richtantenne

> Frequenzmultiplexverfahren

- Mehrere zu übertragende Signale in einem Frequenzbereich gebündelt;
- Bei Funkübertragung werden unterschiedlichen Sendern unterschiedliche Frequenzen zugewiesen.

> Zeitmultiplexverfahren

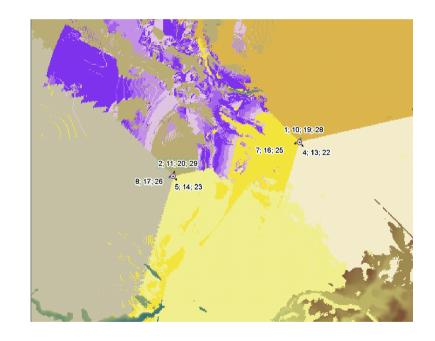
- Zeitversetztes Senden mehrerer Signale

> Wellenlängenmultiplexverfahren

Optisches Frequenzmultiplexverfahren für die Übertragung in Glasfaserkabel

> Codemultiplexverfahren

- Nur in Funktechnik: Kodierung des Signals in orthogonale Codes, die nun gleichzeitig auf einer Frequenz gesendet werden können
- Dekodierung auch bei Überlagerung möglich



Raum

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Raumaufteilung (Space-Multiplexing)

- Ausnutzung des Abstandsverlusts zum parallelen Betriebs verschiedener Funkzellen → zellulare Netze
- Verwendung gerichteter Antennen zur gerichtenen Kommunikations
 - GSM-Antennen mit Richtcharakteristik
 - Richtfunk mit Parabolantenne
 - Laserkommunikation
 - Infrarotkommunikation

Frequenz

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Frequenzmultiplex

- Aufteilung der Bandbreite in Frequenzabschnitte
- Spreizen der Kanäle und Hopping
 - Direct Sequence Spread Spectrum (DSSS)
 - Xor eines Signals mit einer Folge Pseudozufallszahlen beim Sender und Empfänger (Verwandt mit Codemultiplex)
 - Fremde Signale erscheinen als Hintergrundrauschen
 - Frequency Hopping Spread Spectrum (FHSS)
 - Frequenzwechsel durch Pseudozufallszahlen
 - Zwei Versionen
 - Schneller Wechsel (fast hopping): Mehrere Frequenzen pro Nutzdatenbit
 - Langsamer Wechsel (slow hopping): Mehrere Nutzdatenbits pro Frequenz

Zeit

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Zeitaufteilung (Time-Multiplexing)

- Zeitliche Aufteilung des Sende-/Empfangskanals
- Verschiedene Teilnehmer erhalten exklusive Zeiträume (Slots) auf dem Medium
- Genaue Synchronisation notwendig
- Koordination notwendig, oder starre Einteilung

Code

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻CDMA (Code Division Multiple Access)

- z.B. GSM (Global Sysem for Mobile Communication)
- oder UMTS (Universal Mobile Telecommunications System)

≻Beispiel:

- Teilnehmer A:
 - 0 ist (-1,-1)
 - 1 ist (+1,+1)
- Teilnehmer B:
 - 0 ist (-1,+1)
 - 1 ist (+1,-1)
- A sendet 0, B sindet 1:
 - Ergebnis: (-2,0)

Ende der 6. Vorlesung

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Systeme II

Christian Schindelhauer

schindel@informatik.uni-freiburg.de