Systeme II

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

Christian Schindelhauer

Sommersemester 2006

14. Vorlesung

22.06.2006

schindel@informatik.uni-freiburg.de

Evaluation der Lehre im SS2006

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- >Umfrage zur Qualitätssicherung und -verbesserung der Lehre
 - unter den Studierenden
 - in anonymer Form
 - Online-Fragebogen oder zum Ausdrucken
- >http://www.unipark.de/uc/lehrevaluation_ss2006/?a=Systeme II%0A
- >Frist bis zum 30. Juni (das ist nächste Woche...)
- >Gedruckte Bögen bitte in die Übungskästen werfen.
 - Bitte vergessen, den Namen draufzuschreiben!
- >Sprechstunde:
 - Dienstag 14-15 Uhr

Die Grenzen des flachen Routing

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Link State Routing

- benötigt O(g n) Einträge für n Router mit maximalen Grad g
- Jeder Knoten muss an jeden anderen seine Informationen senden

≻Distance Vector

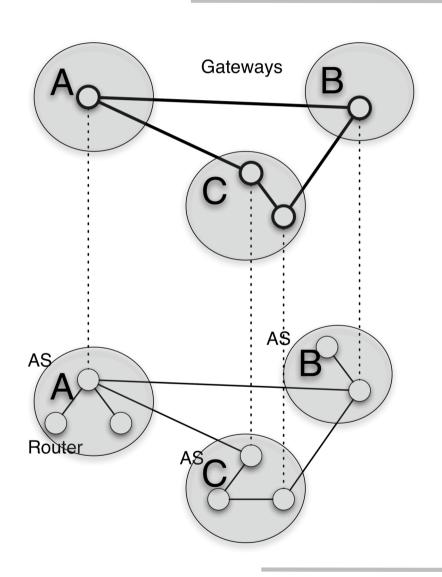
- benötigt O(g n) Einträge
- kann Schleifen einrichten
- Konvergenzzeit steigt mit Netzwerkgröße

➤ Im Internet gibt es mehr als 10⁶ Router

damit sind diese so genannten flachen Verfahren nicht einsetzbar

≻Lösung:

Hierarchisches Routing



AS, Intra-AS und Inter-AS

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

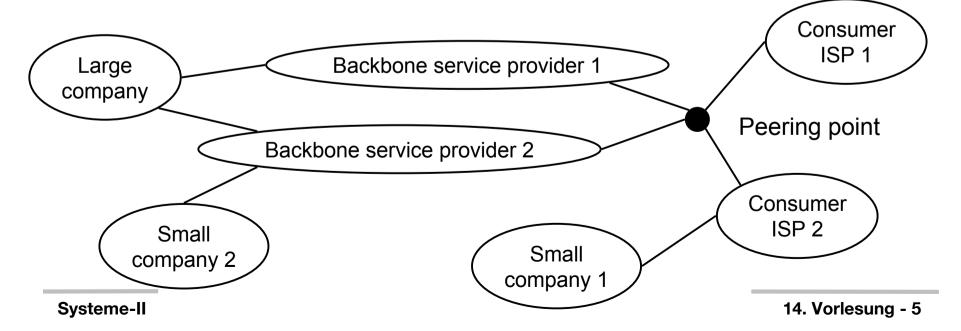
> Autonomous System (AS)

- liefert ein zwei Schichten-Modell des Routing im Internet
- Beispiele für AS:
 - uni-paderborn.de
- ➤ Intra-AS-Routing (Interior Gateway Protocol)
 - ist Routing innerhalb der AS
 - z.B. RIP, OSPF, IGRP, ...
- ➤ Inter-AS-Routing (Exterior Gateway Protocol)
 - Übergabepunkte sind Gateways
 - ist vollkommen dezentrales Routing
 - Jeder kann seine
 Optimierungskriterien vorgeben
 - z.B. EGP (früher), BGP

Typen autonomer Systeme

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

>Stub-AS


Nur eine Verbindung zu anderen AS

> Multihomed AS

- Verbindungen zu anderen ASen
- weigertisch aber Verkehr für andere zu befördern

> Transit AS

- Mehrere Verbindungen
- Leitet fremde Nachrichten durch (z.B. ISP)

Intra-AS: RIP Routing Information Protocol

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

➤ Distance Vector Algorithmus

– Distanzmetrik = Hop-Anzahl

> Distanzvektoren

- werden alle 30s durch Response-Nachricht (advertisement) ausgetauscht

≻Für jedes Advertisement

- Für bis zu 25 Zielnetze werden Routen veröffentlicht per UDP

> Falls kein Advertisement nach 180s empfangen wurde

- Routen über Nachbarn werden für ungültig erklärt
- Neue Advertisments werden zu den Nachbarn geschickt
- Diese antworten auch mit neuen Advertisements
 - falls die Tabellen sich ändern
- Rückverbindungen werden unterdrückt um Ping-pong-Schleifen zu verhindern (poison reverse) gegen Count to Infinity-Problem
 - Unendliche Distanz = 16 Hops

Intra-AS OSPF (Open Shortest Path First)

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- >"open" = öffentlich verfügbar
 - vorherrschendes Protokoll

>Link-State-Algorithmus

- LS Paket-Verbreitung
- Topologie wird in jedem Knoten abgebildet
- Routenberechnung mit Dijkstras Algorithmus

>OSPF-Advertisment

- per TCP, erhöht Sicherheit (security)
 - periodisch oder ausgelöst
- werden in die gesamte AS geflutet
- Mehre Wege gleicher Kosten möglich

Intra-AS Hierarchisches OSPF

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

≻Für große Netzwerke zwei Ebenen:

- Lokales Gebiet und Rückgrat (backbone)
 - Lokal: Link-state advertisement
 - Jeder Knoten berechnet nur Richtung zu den Netzen in anderen lokalen Gebieten

≻Local Area Border Router:

- Fassen die Distanzen in das eigene lokale Gebiet zusammen
- Bieten diese den anderen Area Border Routern an (per Advertisement)

> Backbone Routers

verwenden OSPF beschränkt auf das Rückgrat (backbone)

≻Boundary Routers:

- verbinden zu anderen AS

Inter-AS-Routing

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

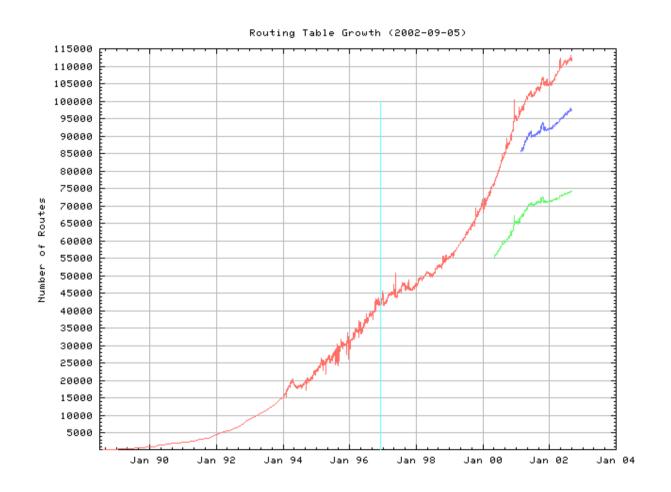
➤ Inter-AS-Routing ist schwierig...

- Organisationen können Durchleitung von Nachrichten verweigern
- Politische Anforderungen
 - Weiterleitung durch andere Länder?
- Routing-Metriken der verschiedenen autonomen Systeme sind oftmals unvergleichbar
 - Wegeoptimierung unmöglich!
 - Inter-AS-Routing versucht wenigstens Erreichbarkeit der Knoten zu ermöglichen
- Größe: momentan müssen Inter-Domain-Router mehr als 140.000
 Netzwerke kennen

Inter-AS: BGPv4 (Border Gateway Protocol)

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

- ▶Ist faktisch der Standard
- > Path-Vector-Protocol
 - ähnlich wie Distance Vector Protocol
 - es werden aber ganze Pfade zum Ziel gespeichert
 - jeder Border Gateway teilt all seinen Nachbarn (peers) den gesamten Pfad (Folge von ASen) zum Ziel mit (advertisement) (per TCP)
- > Falls Gateway X den Pfad zum Peer-Gateway W sendet
 - dann kann W den Pfad wählen oder auch nicht
 - Optimierungskriterien:
 - Kosten, Politik, etc.
 - Falls W den Pfad von X wählt, dann publiziert er
 - Path(W,Z) = (W, Path (X,Z))


>Anmerkung

- X kann den eingehenden Verkehr kontrollieren durch Senden von Advertisements
- Sehr kompliziertes Protokoll

BGP-Routing Tabellengröße 1990-2002

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

http://www.mcvax.org/~jhma/routing/bgp-hist.html

Broadcast & Multicast

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer

> Broadcast routing

- Ein Paket soll (in Kopie) an alle ausgeliefert werden
- Lösungen:
 - Fluten des Netzwerks
 - Besser: Konstruktion eines minimalen Spannbaums

> Multicast routing

- Ein Paket soll an eine gegebene Teilmenge der Knoten ausgeliefert werden (in Kopie)
- Lösung:
 - Optimal: Steiner Baum Problem (bis heute nicht lösbar)
 - Andere (nicht-optimale) Baum-konstruktionen

Ende der 14. Vorlesung

Albert-Ludwigs-Universität Freiburg Rechnernetze und Telematik Prof. Dr. Christian Schindelhauer Systeme II
Christian Schindelhauer
schindel@informatik.uni-freiburg.de