

Systeme II

7. Vorlesungswoche 09.06. – 13.06.2008

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Christian Schindelhauer Sommer 2008

1

Die Vermittlungsschicht The Network Layer

Kapitel V

Freitag, 13. Juni 2008

Circuit Switching oder Packet Switching

Circuit Switching

- Etablierung einer Verbindung zwischen lokalen Benutzern durch Schaltstellen
 - mit expliziter Zuordnung von realen Schaltkreisen
 - oder expliziter Zuordnung von virtuellen Ressourcen, z.B. Slots
- Quality of Service einfach (außer bei)
 - Leitungsaufbau
 - Leitungsdauer
- Problem
 - Statische Zuordnung
 - Ineffiziente Ausnutzung des Kommunikationsmedium bei dynamischer Last
- Anwendung
 - Telefon
 - Telegraf
 - Funkverbindung

Circuit Switching oder Packet Switching

Packet Switching

- Grundprinzip von IP
 - Daten werden in Pakete aufgeteilt und mit Absender/Ziel-Information unabhängig versandt
- Problem: Quality of Service
 - Die Qualität der Verbindung hängt von einzelnen Paketen ab
 - Entweder Zwischenspeichern oder Paketverlust
- Vorteil:
 - Effiziente Ausnutzung des Mediums bei dynamischer Last

Resümee

- Packet Switching hat Circuit Switching in praktisch allen Anwendungen abgelöst
- Grund:
 - Effiziente Ausnutzung des Mediums

Systeme II Sommer 2008

Taktik der Schichten

Transport

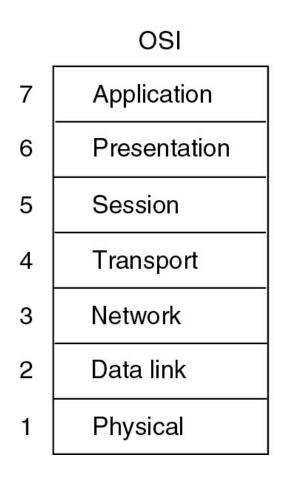
- muss gewisse Flusskontrolle gewährleisten
- z.B. Fairness zwischen gleichzeiten Datenströmen

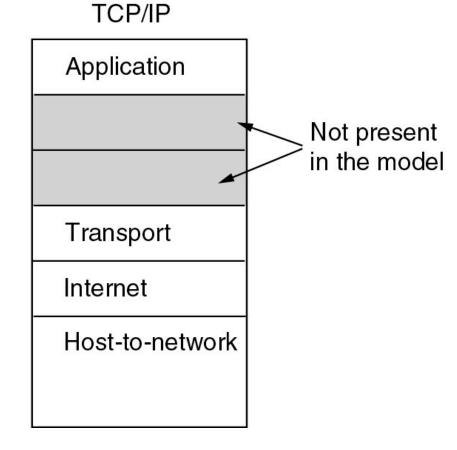
Vermittlung

 Quality of Service (virtuelles Circuit Switching)

Sicherung

 Flusskontrolle zur Auslastung des Kanals


Layer	Policies					
Transport	Retransmission policy					
	Out-of-order caching policy					
	Acknowledgement policy					
	Flow control policy					
	Timeout determination					
Network	Virtual circuits versus datagram inside the subnet					
	Packet queueing and service policy					
	Packet discard policy					
	Routing algorithm					
	Packet lifetime management					
Data link	Retransmission policy					
	Out-of-order caching policy					
	Acknowledgement policy					
	Flow control policy					


Die Schichtung des Internets - TCP/IP-Layer

Anwendung	Application	Telnet, FTP, HTTP, SMTP (E-Mail),
Transport	Transport	TCP (Transmission Control Protocol) UDP (User Datagram Protocol)
Vermittlung	Network	IP (Internet Protocol) + ICMP (Internet Control Message Protocol) + IGMP (Internet Group Management Protoccol)
Verbindung Host-to-networ		LAN (z.B. Ethernet, Token Ring etc.)

Systeme II Sommer 2008

OSI versus TCP/IP

(Aus Tanenbaum)

Systeme II Sommer 2008

7

Hybrides Modell

Wir verwenden hier Tanenbaums
 hybrides Modell

5	Application layer
4	Transport layer
3	Network layer
2	Data link layer
1	Physical layer

Tanenbaum

7	Application						
6	Presentation						
5	Session						
4	Transport						
3	Network						
2	Data link						
1	Physical						

TCP/IP
Application
Transport
Internet
Host-to-network

Systeme II Sommer 2008 (Aus Tanenbaum)
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Christian Schindelhauer

8

Warum eine Vermittlungsschicht

- Lokale Netzwerke k\u00f6nnen nicht nur \u00fcber Hubs, Switches oder Bridges verkn\u00fcpft werden
 - Hubs: Kollisionen nehmen überhand
 - Switches:
 - Routen-Information durch Beobachtung der Daten ineffizient
 - Broadcast aller Nachrichten schafft Probleme
 - Es gibt über 10 Mio. lokale Netzwerke im Internet...
- Zur Beförderung von Paketen in großen Netzwerken braucht man Routeninformationen
 - Wie baut man diese auf?
 - Wie leitet man Pakete weiter?
- Das Internet-Protokoll ist im wesentlich ein Vermittlungsschichtprotokoll

Systeme II Sommer 2008

Routing-Tabelle und Paket-Weiterleitung

IP-Routing-Tabelle

- enthält für Ziel (Destination) die Adresse des nächsten Rechners (Gateway)
- Destination kann einen Rechner oder ganze Sub-nets beschreiben
- Zusätzlich wird ein Default-Gateway angegeben

Packet Forwarding

- früher Packet Routing genannt
- IP-Paket (datagram) enthält Start-IP-Adresse und Ziel-IP-Adresse
 - Ist Ziel-IP-Adresse = eigene Rechneradresse dann Nachricht ausgeliefert
 - Ist Ziel-IP-Adresse in Routing-Tabelle dann leite Paket zum angegeben Gateway
 - Ist Ziel-IP-Subnetz in Routing-Tabelle dann leite Paket zum angegeben Gateway
 - Ansonsten leite zum Default-Gateway

Systeme II Sommer 2008

Paket-Weiterleitung im Internet Protokoll

- IP-Paket (datagram) enthält unter anderen
 - TTL (Time-to-Live): Anzahl der Hops
 - Start-IP-Adresse
 - Ziel-IP-Adresse
- Behandlung eines Pakets
 - Verringere TTL (Time to Live) um 1
 - Falls TTL ≠ 0 dann Packet-Forwarding aufgrund der Routing-Tabelle
 - Falls TTL = 0 oder bei Problemen in Packet-Forwarding:
 - Lösche Paket
 - Falls Paket ist kein ICMP-Paket dann
 - Sende ICMP-Paket mit
 - Start= aktuelle IP-Adresse und
 - Ziel = alte Start-IP-Adresse

Systeme II Sommer 2008

Statisches und Dynamisches Routing

Forwarding:

Weiterleiten von Paketen

Routing:

- Erstellen Routen, d.h.
 - Erstellen der Routing-Tabelle

Statisches Routing

- Tabelle wird manuell erstellt
- sinnvoll f
 ür kleine und stabile LANs

Dynamisches Routing

- Tabellen werden durch Routing-Algorithmus erstellt
- Zentraler Algorithmus, z.B. Link State
 - Einer/jeder kennt alle Information, muss diese erfahren
- Dezentraler Algorithmus, z.B. Distance Vector
 - arbeitet lokal in jedem Router
 - verbreitet lokale Information im Netzwerk

Das Kürzeste-Wege-Problem

Gegeben:

- Ein gerichteter Graph G=(V,E)
- Startknoten
- mit Kantengewichtungen $w : E \rightarrow IR$

Definiere Gewicht des kürzesten Pfades

- δ(u,v) = minimales Gewicht w(p) eines Pfades p von u nach v
- w(p) = Summe aller Kantengewichte w(e) der Kanten e des Pfades

Gesucht:

- Die kürzesten Wege vom Startknoten s zu allen Knoten in G
 - also jeweils ein Pfad mit dem geringsten Gewicht zu jedem anderen Knoten

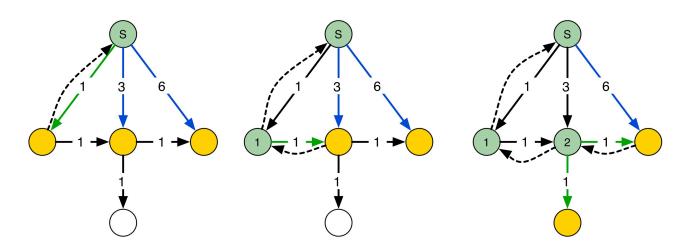
Lösungsmenge:

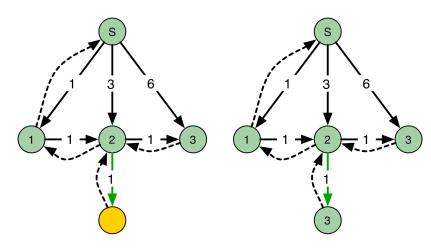
- wird beschrieben durch einen Baum mit Wurzel s
- Jeder Knoten zeigt in Richtung der Wurzel

Systeme II Sommer 2008

Kürzeste Wege mit Edsger Wybe Dijkstra

 Dijkstras Kürzeste-Wege-Algorithmus kann mit Laufzeit Θ(|E| + |V| log |V|) implementiert werden.


```
\begin{array}{l} \textbf{Dijkstra}(G,w,s) \\ \textbf{begin} \\ & \textbf{Init-Single-Source}(G,w) \\ & S \leftarrow \emptyset \\ & Q \leftarrow V \\ & \text{while } Q \neq \emptyset \text{ do} \\ & u \leftarrow \text{Element aus } Q \text{ mit minimalen Wert } d(u) \\ & S \leftarrow S \cup \{u\} \\ & Q \leftarrow Q \setminus \{u\} \\ & \text{for all } v \in \text{Adj}(u) \text{ do} \\ & \text{Relax}(u,v) \\ & \text{od} \\ & \text{od} \\ & \text{end} \end{array}
```


```
\begin{array}{c} \textbf{Init-Single-Source}(G,w,s) \\ \text{begin} \\ \text{for all } v \in V \text{ do} \\ d(v) \leftarrow \infty \\ \pi(v) \leftarrow v \\ \text{od} \\ d(s) \leftarrow 0 \\ \text{end} \end{array}
```

```
\begin{array}{c} \mathbf{Relax}(u,v) \\ \mathbf{begin} \\ \quad \mathbf{if} \ d(v) > d(u) + w(u,v) \ \mathbf{then} \\ \quad d(v) \leftarrow d(u) + w(u,v) \\ \quad \pi(v) \leftarrow u \\ \quad \mathbf{fi} \\ \mathbf{end} \end{array}
```

Systeme II Sommer 2008

Dijkstra: Beispiel

Systeme II Sommer 2008 Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

15

Bellman-Ford

- Bei negativen Kantengewichten versagt Dijkstras Algorithmus
- Bellman-Ford
 - löst dies in Laufzeit O(|V| |E|).

```
\begin{array}{l} \textbf{Bellman-Ford}(G,w,s) \\ \textbf{begin} \\ & \textbf{Init-Single-Source}(G,w) \\ & \textbf{loop} \; |V|-1 \; \text{times do} \\ & \textbf{for all} \; (u,v) \in E \; \text{do} \\ & \textbf{Relax}(u,v) \\ & \textbf{od} \\ & \textbf{od} \\ & \textbf{for all} \; (u,v) \in E \; \text{do} \\ & \textbf{if} \; d(v) > d(u) + w(u,v) \; \text{then return false} \\ & \textbf{od} \\ & \textbf{return true} \\ & \textbf{end} \end{array}
```

```
\begin{array}{c} \textbf{Init-Single-Source}(G,w,s) \\ \textbf{begin} \\ \textbf{for all } v \in V \textbf{ do} \\ d(v) \leftarrow \infty \\ \pi(v) \leftarrow v \\ \textbf{od} \\ d(s) \leftarrow 0 \\ \textbf{end} \end{array}
```

```
\begin{aligned} & \mathbf{Relax}(u,v) \\ & \mathbf{begin} \\ & & \text{if } d(v) > d(u) + w(u,v) \text{ then } \\ & & d(v) \leftarrow d(u) + w(u,v) \\ & & \pi(v) \leftarrow u \\ & \text{fi} \\ & \text{end} \end{aligned}
```

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Systeme II Sommer 2008

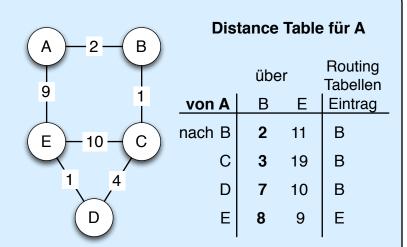
Distance Vector Routing Protocol

17

Distance Table Datenstruktur

- Jeder Knoten besitzt eine
 - Zeile für jedes mögliches Ziel
 - Spalte für jeden direkten Nachbarn

Verteilter Algorithmus


 Jeder Knoten kommuniziert nur mit seinem Nachbarn

Asynchroner Betrieb

 Knoten müssen nicht Informationen austauschen in einer Runde

Selbst Terminierend

 läuft bis die Knoten keine Informationen mehr austauschen

Distance Table für C

		über		Routing Tabellen
von C	В	D	Е	Eintrag
nach A	3	14	18	В
В	1	9	9	В
D	6	4	11	D
Е	7	5	10	D

Systeme II Sommer 2008

Das "Count to Infinity" - Problem

Gute Nachrichten verbreiten sich schnell

 Neue Verbindung wird schnell veröffentlicht

Schlechte Nachrichten verbreiten sich langsam

- Verbindung fällt aus
- Nachbarn erhöhen wechselseitig ihre Entfernung
- "Count to Infinity"-Problem

	Distance Table für A					Distance Table für B			
(A) vo	n A	über B	Routing Tabellen Eintrag	voi	n B	A	über C	Routing Tabellen Eintrag	
2 nach	В	2	В	nach	Α	2	-	А	
В	С	-	В		С	-	1	С	
	nach kurzer Zeit								
VC VC	n A	über B	Routing Tabellen Eintrag	von	в	ük A	er C	Routing Tabellen Eintrag	
C	В	2	В	nach A	۱ ا	2	4	Α	
	С	3	В	C		5	1	С	

	von A	über B	Routing Tabellen Eintrag	von B	А	über C	Routing Tabellen Eintrag
A	nach B	2	В	nach A	2	-	А
2	С	3	В	С	5	-	A
В	,	über	Routing			über	Routing
	von A	В	Tabellen Eintrag	von B	Α	С	Tabellen Eintrag
1	nach B	2	В	nach A	2	-	А
(c)	С	7	В	С	5	-	Α
	'	über	Routing			über	Routing
	von A	В	Tabellen Eintrag	von B	А	С	Tabellen Eintrag
	nach B	2	В	nach A	2	-	А
	С	7	В	С	9	-	A /

Rechnernetze und Telematik Albert-Ludwigs-Universität Freiburg Christian Schindelhauer

Systeme II Sommer 2008

18

Link-State Protocol

Link State Router

- tauschen Information mittels Link State Packets (LSP) aus
- Jeder verwendet einen eigenen Kürzeste-Wege-Algorithmus zu Anpassung der Routing-Tabelle

LSP enthält

- ID des LSP erzeugenden Knotens
- Kosten dieses Knotens zu jedem direkten Nachbarn
- Sequenznr. (SEQNO)
- TTL-Feld f
 ür dieses Feld (time to live)

Verlässliches Fluten (Reliable Flooding)

- Die aktuellen LSP jedes Knoten werden gespeichert
- Weiterleitung der LSP zu allen Nachbarn
 - bis auf den Knoten der diese ausgeliefert hat
- Periodisches Erzeugen neuer LSPs
 - mit steigender SEQNOs
- Verringern der TTL bei jedem Weiterleiten

Systeme II Sommer 2008

Die Grenzen des flachen Routing

Link State Routing

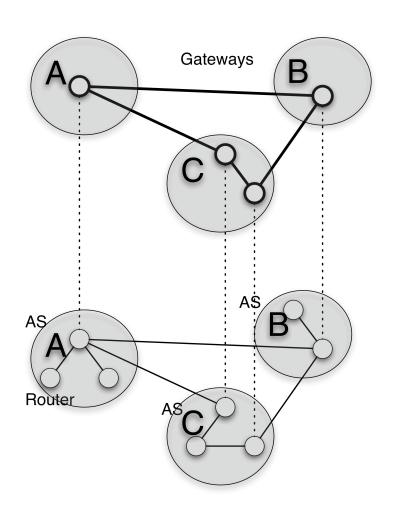
- benötigt O(g n) Einträge für n Router mit maximalen Grad g
- Jeder Knoten muss an jeden anderen seine Informationen senden

Distance Vector

- benötigt O(g n) Einträge
- kann Schleifen einrichten
- Konvergenzzeit steigt mit Netzwerkgröße

Im Internet gibt es mehr als 10⁶ Router

 damit sind diese so genannten flachen Verfahren nicht einsetzbar


Lösung:

Hierarchisches Routing

Systeme II Sommer 2008

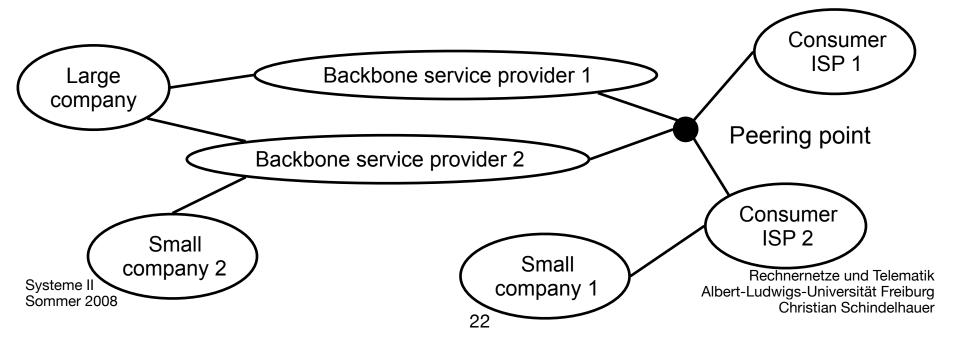
AS, Intra-AS und Inter-AS

- Autonomous System (AS)
 - liefert ein zwei Schichten-Modell des Routing im Internet
 - Beispiele für AS:
 - uni-freiburg.de
- Intra-AS-Routing (Interior Gateway Protocol)
 - ist Routing innerhalb der AS
 - z.B. RIP, OSPF, IGRP, ...
- Inter-AS-Routing (Exterior Gateway Protocol)
 - Übergabepunkte sind Gateways
 - ist vollkommen dezentrales Routing
 - Jeder kann seine Optimierungskriterien vorgeben
 - z.B. EGP (früher), BGP

Systeme II Sommer 2008

Typen autonomer Systeme

Stub-AS


Nur eine Verbindung zu anderen AS

Multihomed AS

- Verbindungen zu anderen ASen
- weigert sich aber Verkehr für andere zu befördern

Transit AS

- Mehrere Verbindungen
- Leitet fremde Nachrichten durch (z.B. ISP)

Freitag, 13. Juni 2008 22

Intra-AS: RIP Routing Information Protocol

Distance Vector Algorithmus

Distanzmetrik = Hop-Anzahl

Distanzvektoren

 werden alle 30s durch Response-Nachricht (advertisement) ausgetauscht

Für jedes Advertisement

- Für bis zu 25 Zielnetze werden Routen veröffentlicht per UDP
- Falls kein Advertisement nach 180s empfangen wurde
 - Routen über Nachbarn werden für ungültig erklärt
 - Neue Advertisments werden zu den Nachbarn geschickt
 - Diese antworten auch mit neuen Advertisements
 - falls die Tabellen sich ändern
 - Rückverbindungen werden unterdrückt um Ping-Pong-Schleifen zu verhindern (poison reverse) gegen Count-to-Infinity-Problem
 - Unendliche Distanz = 16 Hops

Systeme II Sommer 2008

Intra-AS OSPF (Open Shortest Path First)

- "open" = öffentlich verfügbar
- Link-State-Algorithmus
 - LS Paket-Verbreitung
 - Topologie wird in jedem Knoten abgebildet
 - Routenberechnung mit Dijkstras Algorithmus
- OSPF-Advertisment
 - per TCP, erhöht Sicherheit (security)
 - werden in die gesamte AS geflutet
 - Mehrere Wege gleicher Kosten möglich

Intra-AS Hierarchisches OSPF

Für große Netzwerke zwei Ebenen:

- Lokales Gebiet und Rückgrat (backbone)
 - Lokal: Link-state advertisement
 - Jeder Knoten berechnet nur Richtung zu den Netzen in anderen lokalen Gebieten

Local Area Border Router:

- Fassen die Distanzen in das eigene lokale Gebiet zusammen
- Bieten diese den anderen Area Border Routern an (per Advertisement)

Backbone Routers

verwenden OSPF beschränkt auf das Rückgrat (backbone)

Boundary Routers:

verbinden zu anderen AS

Systeme II Sommer 2008

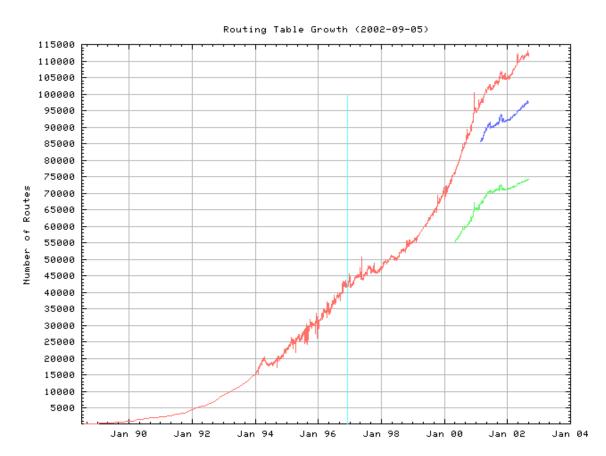
Intra-AS: IGRP (Interior Gateway Routing Protocol)

- CISCO-Protokoll, Nachfolger von RIP (1980er)
- Distance-Vector-Protokoll, wie RIP
 - Hold time
 - Split Horizon
 - Poison Reverse
- Verschiedene Kostenmetriken
 - Delay, Bandwidth, Reliability, Load etc.
- Verwendet TCP f
 ür den Austausch von Routing Updates

Systeme II Sommer 2008

Inter-AS-Routing

- Inter-AS-Routing ist schwierig...
 - Organisationen k\u00f6nnen Durchleitung von Nachrichten verweigern
 - Politische Anforderungen
 - Weiterleitung durch andere Länder?
 - Routing-Metriken der verschiedenen autonomen Systeme sind oftmals unvergleichbar
 - Wegeoptimierung unmöglich!
 - Inter-AS-Routing versucht wenigstens Erreichbarkeit der Knoten zu ermöglichen
 - Größe: momentan müssen Inter-Domain-Router mehr als 140.000 Netzwerke kennen


Systeme II Sommer 2008

Inter-AS: BGPv4 (Border Gateway Protocol)

- Ist faktisch der Standard
- Path-Vector-Protocol
 - ähnlich wie Distance Vector Protocol
 - es werden aber ganze Pfade zum Ziel gespeichert
 - jeder Border Gateway teilt all seinen Nachbarn (peers) den gesamten Pfad (Folge von ASen) zum Ziel mit (advertisement) (per TCP)
- Falls Gateway X den Pfad zum Peer-Gateway W sendet
 - dann kann W den Pfad wählen oder auch nicht
 - Optimierungskriterien:
 - Kosten, Politik, etc.
 - Falls W den Pfad von X wählt, dann publiziert er
 - Path(W,Z) = (W, Path (X,Z))
- Anmerkung
 - X kann den eingehenden Verkehr kontrollieren durch Senden von Advertisements
 - Sehr kompliziertes Protokoll

Systeme II Sommer 2008

BGP-Routing Tabellengröße 1990-2002

http://www.mcvax.org/~jhma/routing/bgp-hist.html

Systeme II Sommer 2008

Broadcast & Multicast

Broadcast routing

- Ein Paket soll (in Kopie) an alle ausgeliefert werden
- Lösungen:
 - Fluten des Netzwerks
 - Besser: Konstruktion eines minimalen Spannbaums

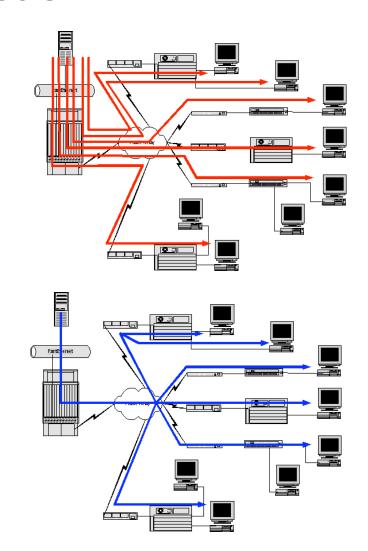
Multicast routing

- Ein Paket soll an eine gegebene Teilmenge der Knoten ausgeliefert werden (in Kopie)
- Lösung:
 - Optimal: Steiner Baum Problem (bis heute nicht lösbar)
 - Andere (nicht-optimale) Baum-konstruktionen

Systeme II Sommer 2008

IP Multicast

Motivation


 Übertragung eines Stroms an viele Empfänger

▶ Unicast

- Strom muss mehrfach einzeln übertragen werden
- Bottleneck am Sender

Multicast

- Strom wird über die Router vervielfältigt
- Kein Bottleneck mehr

Bilder von Peter J. Welcher Rechnernetze und Telematik www.netcraftsmcAlbert-Ludwigs-Universität Freiburg Christian Schindelhauer

Systeme II Sommer 2008

31

Funktionsprinzip

IPv4 Multicast-Adressen

- in der Klasse D (außerhalb des CIDR Classless Interdomain Routings)
- 224.0.0.0 239.255.255.255

Hosts melden sich per IGMP bei der Adresse an

- IGMP = Internet Group Management Protocol
- Nach der Anmeldung wird der Multicast-Tree aktualisiert

Source sendet an die Multicast-Adresse

- Router duplizieren die Nachrichten an den Routern
- und verteilen sie in die Bäume

Angemeldete Hosts erhalten diese Nachrichten

- bis zu einem Time-Out
- oder bis sie sich abmelden

Achtung:

- Kein TCP, nur UDP
- Viele Router lehnen die Beförderung von Multicast-Nachrichten ab
 - Lösung: Tunneln

Systeme II Sommer 2008

Routing Protokolle

Distance Vector Multicast Routing Protocol (DVMRP)

- jahrelang eingesetzt in MBONE (insbesondere in Freiburg)
- Eigene Routing-Tabelle für Multicast

Protocol Independent Multicast (PIM)

- im Sparse Mode (PIM-SM)
- aktueller Standard
- beschneidet den Multicast Baum
- benutzt Unicast-Routing-Tabellen
- ist damit weitestgehend protokollunabhängig

Voraussetzung PIM-SM:

- benötigt Rendevous-Point (RP) in ein-Hop-Entfernung
- RP muss PIM-SM unterstützen
- oder Tunneling zu einem Proxy in der N\u00e4he eines RP

Systeme II Sommer 2008

Warum so wenig IP Multicast?

- Trotz erfolgreichen Einsatz
 - in Video-Übertragung von IETF-Meetings
 - MBONE (Multicast Backbone)
- gibt es wenig ISP welche IP Multicast in den Routern unterstützen
- Zusätzlicher Wartungsaufwand
 - Schwierig zu konfigurieren
 - Verschiedene Protokolle
- Gefahr von Denial-of-Service-Attacken
 - Implikationen größer als bei Unicast
- Transport-Protokoll
 - Nur UDP einsetzbar
 - Zuverlässige Protokolle

- Vorwärtsfehlerkorrektur
- Oder propertiäre Protokolle in den Routern (z.B. CISCO)

Marktsituation

- Endkunden fragen kaum Multicast nach (benutzen lieber P2P-Netzwerke)
- Wegen einzelner Dateien und weniger Abnehmer erscheint ein Multicast wenig erstrebenswert (Adressenknappheit!)

Systeme II Sommer 2008

Systeme II

Ende der 7. Vorlesungswoche

Albert-Ludwigs-Universität Freiburg Institut für Informatik Rechnernetze und Telematik Christian Schindelhauer Sommer 2008

Freitag, 13. Juni 2008 35