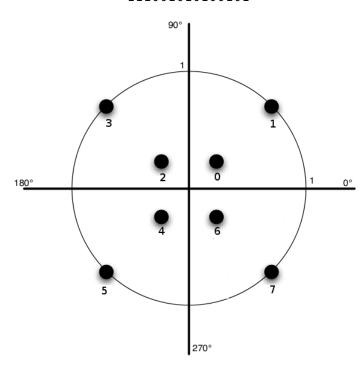
Übungen zur Vorlesung

Systeme II / Netzwerke I

Sommer 2010 Blatt 3


AUFGABE 1:

Geben Sie drei, von ihnen ausgedachte, selbsttaktende Kodierungen an. Beweisen Sie dass die von ihnen angegebenen Kodierungen selbsttaktend sind.

AUFGABE 2:

- 1. Klären Sie folgende Begriffe:
 - (a) Bandbreite
 - (b) Baud
 - (c) Zeichenrate
 - (d) Bitübertragungsrate
- 2. Bringen Sie die Tatsache, dass zwischen Zeichenrate und Bitübertragungsrate unterschieden wird, mit dem Theorem von Nyquist in Verbindung.
- 3. Unten sehen Sie ein so genanntes Konstellationsdiagramm. Sikizzieren Sie die Phasen- und Amplitudenmodulation des folgenden Signals:

111001010100101

AUFGABE 3:

Jedem Nutzer wird zum Senden eines Bits eine Bitfolge zugeordnet, hier in bipolarer Darstellung

• Nutzer A:

- Bit
$$1 = (+1, -1, -1, +1, -1, +1)$$

- Bit $0 = (-1, +1, +1, -1, +1, -1)$

• Nutzer B:

- Bit
$$1 = (+1, +1, -1, -1, +1, +1)$$

- Bit $0 = (-1, -1, +1, +1, -1, -1)$

• Nutzer C:

- Bit
$$1 = (+1, +1, -1, +1, +1, -1)$$

- Bit $0 = (-1, -1, +1, -1, -1, +1)$.

- 1. Wie sieht die bildliche Darstellungen der Bits 0 und 1 der Nutzer aus?
- 2. Die den einzelnen Nutzern zugeordneten Bitfolgen sollten ein orthogonales System bezüglich des inneren Produkts bilden. D.h. das normierte Skalarprodukt sollte 0 ergeben. Erläutern Sie, warum diese Bitfolgen nicht orthogonal sind und geben Sie ein Beispiel für eine orthogonale Bitfolge mit 4 Bits an.
- 3. Stellen Sie die Nachricht 1101 für Nutzer A, B und C dar.